Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Reverse engineering learned optimizers reveals known and novel mechanisms

Nov 04, 2020
Niru Maheswaranathan, David Sussillo, Luke Metz, Ruoxi Sun, Jascha Sohl-Dickstein


  Access Paper or Ask Questions

The geometry of integration in text classification RNNs

Oct 28, 2020
Kyle Aitken, Vinay V. Ramasesh, Ankush Garg, Yuan Cao, David Sussillo, Niru Maheswaranathan

* 9+19 pages, 30 figures 

  Access Paper or Ask Questions

How recurrent networks implement contextual processing in sentiment analysis

Apr 17, 2020
Niru Maheswaranathan, David Sussillo


  Access Paper or Ask Questions

Universality and individuality in neural dynamics across large populations of recurrent networks

Jul 19, 2019
Niru Maheswaranathan, Alex H. Williams, Matthew D. Golub, Surya Ganguli, David Sussillo


  Access Paper or Ask Questions

Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics

Jun 25, 2019
Niru Maheswaranathan, Alex Williams, Matthew D. Golub, Surya Ganguli, David Sussillo


  Access Paper or Ask Questions

Task-Driven Convolutional Recurrent Models of the Visual System

Oct 27, 2018
Aran Nayebi, Daniel Bear, Jonas Kubilius, Kohitij Kar, Surya Ganguli, David Sussillo, James J. DiCarlo, Daniel L. K. Yamins

* NIPS 2018 Camera Ready Version, 16 pages including supplementary information, 6 figures 

  Access Paper or Ask Questions

A Dataset and Architecture for Visual Reasoning with a Working Memory

Jul 20, 2018
Guangyu Robert Yang, Igor Ganichev, Xiao-Jing Wang, Jonathon Shlens, David Sussillo


  Access Paper or Ask Questions

Recurrent Segmentation for Variable Computational Budgets

Mar 15, 2018
Lane McIntosh, Niru Maheswaranathan, David Sussillo, Jonathon Shlens


  Access Paper or Ask Questions

Input Switched Affine Networks: An RNN Architecture Designed for Interpretability

Jun 12, 2017
Jakob N. Foerster, Justin Gilmer, Jan Chorowski, Jascha Sohl-Dickstein, David Sussillo

* ICLR 2107 submission: https://openreview.net/forum?id=H1MjAnqxg 

  Access Paper or Ask Questions

Capacity and Trainability in Recurrent Neural Networks

Mar 03, 2017
Jasmine Collins, Jascha Sohl-Dickstein, David Sussillo

* Published as a conference paper at ICLR 2017 

  Access Paper or Ask Questions

Making brain-machine interfaces robust to future neural variability

Oct 19, 2016
David Sussillo, Sergey D. Stavisky, Jonathan C. Kao, Stephen I. Ryu, Krishna V. Shenoy

* Nature Communications. 7:13749 (2016) 
* D.S., S.D.S., and J.C.K. contributed equally to this work 

  Access Paper or Ask Questions

LFADS - Latent Factor Analysis via Dynamical Systems

Aug 22, 2016
David Sussillo, Rafal Jozefowicz, L. F. Abbott, Chethan Pandarinath

* 16 pages, 11 figures 

  Access Paper or Ask Questions

A Neural Transducer

Aug 04, 2016
Navdeep Jaitly, David Sussillo, Quoc V. Le, Oriol Vinyals, Ilya Sutskever, Samy Bengio


  Access Paper or Ask Questions

Random Walk Initialization for Training Very Deep Feedforward Networks

Feb 27, 2015
David Sussillo, L. F. Abbott

* 10 pages, 4 figures 

  Access Paper or Ask Questions