Abstract:Discourse particles are crucial elements that subtly shape the meaning of text. These words, often polyfunctional, give rise to nuanced and often quite disparate semantic/discourse effects, as exemplified by the diverse uses of the particle "just" (e.g., exclusive, temporal, emphatic). This work investigates the capacity of LLMs to distinguish the fine-grained senses of English "just", a well-studied example in formal semantics, using data meticulously created and labeled by expert linguists. Our findings reveal that while LLMs exhibit some ability to differentiate between broader categories, they struggle to fully capture more subtle nuances, highlighting a gap in their understanding of discourse particles.
Abstract:Large Language Models (LLMs) are being explored for applications in scientific research, including their capabilities to synthesize literature, answer research questions, generate research ideas, and even conduct computational experiments. Ultimately, our goal is for these to help scientists derive novel scientific insights. In many areas of science, such insights often arise from processing and visualizing data to understand its patterns. However, evaluating whether an LLM-mediated scientific workflow produces outputs conveying the correct scientific insights is challenging to evaluate and has not been addressed in past work. We introduce AstroVisBench, the first benchmark for both scientific computing and visualization in the astronomy domain. AstroVisBench judges a language model's ability to both (1) create astronomy-specific workflows to process and analyze data and (2) visualize the results of these workflows through complex plots. Our evaluation of visualizations uses a novel LLM-as-a-judge workflow, which is validated against annotation by five professional astronomers. Using AstroVisBench we present an evaluation of state-of-the-art language models, showing a significant gap in their ability to engage in astronomy research as useful assistants. This evaluation provides a strong end-to-end evaluation for AI scientists that offers a path forward for the development of visualization-based workflows, which are central to a broad range of domains from physics to biology.
Abstract:Exceptional behavior tests (EBTs) are crucial in software development for verifying that code correctly handles unwanted events and throws appropriate exceptions. However, prior research has shown that developers often prioritize testing "happy paths", e.g., paths without unwanted events over exceptional scenarios. We present exLong, a framework that automatically generates EBTs to address this gap. exLong leverages a large language model (LLM) fine-tuned from CodeLlama and incorporates reasoning about exception-throwing traces, conditional expressions that guard throw statements, and non-exceptional behavior tests that execute similar traces. Our demonstration video illustrates how exLong can effectively assist developers in creating comprehensive EBTs for their project (available at https://youtu.be/Jro8kMgplZk).
Abstract:Evaluation of language model outputs on structured writing tasks is typically conducted with a number of desirable criteria presented to human evaluators or large language models (LLMs). For instance, on a prompt like "Help me draft an academic talk on coffee intake vs research productivity", a model response may be evaluated for criteria like accuracy and coherence. However, high-quality responses should do more than just satisfy basic task requirements. An effective response to this query should include quintessential features of an academic talk, such as a compelling opening, clear research questions, and a takeaway. To help identify these implicit criteria, we introduce EvalAgent, a novel framework designed to automatically uncover nuanced and task-specific criteria. EvalAgent first mines expert-authored online guidance. It then uses this evidence to propose diverse, long-tail evaluation criteria that are grounded in reliable external sources. Our experiments demonstrate that the grounded criteria produced by EvalAgent are often implicit (not directly stated in the user's prompt), yet specific (high degree of lexical precision). Further, EvalAgent criteria are often not satisfied by initial responses but they are actionable, such that responses can be refined to satisfy them. Finally, we show that combining LLM-generated and EvalAgent criteria uncovers more human-valued criteria than using LLMs alone.
Abstract:As large language models become increasingly capable at various writing tasks, their weakness at generating unique and creative content becomes a major liability. Although LLMs have the ability to generate text covering diverse topics, there is an overall sense of repetitiveness across texts that we aim to formalize and quantify via a similarity metric. The familiarity between documents arises from the persistence of underlying discourse structures. However, existing similarity metrics dependent on lexical overlap and syntactic patterns largely capture $\textit{content}$ overlap, thus making them unsuitable for detecting $\textit{structural}$ similarities. We introduce an abstraction based on linguistic theories in Questions Under Discussion (QUD) and question semantics to help quantify differences in discourse progression. We then use this framework to build $\textbf{QUDsim}$, a similarity metric that can detect discursive parallels between documents. Using QUDsim, we find that LLMs often reuse discourse structures (more so than humans) across samples, even when content differs. Furthermore, LLMs are not only repetitive and structurally uniform, but are also divergent from human authors in the types of structures they use.
Abstract:Large Language Models (LLMs) excel at text summarization, a task that requires models to select content based on its importance. However, the exact notion of salience that LLMs have internalized remains unclear. To bridge this gap, we introduce an explainable framework to systematically derive and investigate information salience in LLMs through their summarization behavior. Using length-controlled summarization as a behavioral probe into the content selection process, and tracing the answerability of Questions Under Discussion throughout, we derive a proxy for how models prioritize information. Our experiments on 13 models across four datasets reveal that LLMs have a nuanced, hierarchical notion of salience, generally consistent across model families and sizes. While models show highly consistent behavior and hence salience patterns, this notion of salience cannot be accessed through introspection, and only weakly correlates with human perceptions of information salience.
Abstract:Medical research faces well-documented challenges in translating novel treatments into clinical practice. Publishing incentives encourage researchers to present "positive" findings, even when empirical results are equivocal. Consequently, it is well-documented that authors often spin study results, especially in article abstracts. Such spin can influence clinician interpretation of evidence and may affect patient care decisions. In this study, we ask whether the interpretation of trial results offered by Large Language Models (LLMs) is similarly affected by spin. This is important since LLMs are increasingly being used to trawl through and synthesize published medical evidence. We evaluated 22 LLMs and found that they are across the board more susceptible to spin than humans. They might also propagate spin into their outputs: We find evidence, e.g., that LLMs implicitly incorporate spin into plain language summaries that they generate. We also find, however, that LLMs are generally capable of recognizing spin, and can be prompted in a way to mitigate spin's impact on LLM outputs.
Abstract:Aligning Large Language Models to integrate and reflect human values, especially for tasks that demand intricate human oversight, is arduous since it is resource-intensive and time-consuming to depend on human expertise for context-specific guidance. Prior work has utilized predefined sets of rules or principles to steer the behavior of models (Bai et al., 2022; Sun et al., 2023). However, these principles tend to be generic, making it challenging to adapt them to each individual input query or context. In this work, we present Situated-PRInciples (SPRI), a framework requiring minimal or no human effort that is designed to automatically generate guiding principles in real-time for each input query and utilize them to align each response. We evaluate SPRI on three tasks, and show that 1) SPRI can derive principles in a complex domain-specific task that leads to on-par performance as expert-crafted ones; 2) SPRI-generated principles lead to instance-specific rubrics that outperform prior LLM-as-a-judge frameworks; 3) using SPRI to generate synthetic SFT data leads to substantial improvement on truthfulness. We release our code and model generations at https://github.com/honglizhan/SPRI-public.
Abstract:Health-related discussions on social media like Reddit offer valuable insights, but extracting quantitative data from unstructured text is challenging. In this work, we present an adapted framework from QuaLLM into QuaLLM-Health for extracting clinically relevant quantitative data from Reddit discussions about glucagon-like peptide-1 (GLP-1) receptor agonists using large language models (LLMs). We collected 410k posts and comments from five GLP-1-related communities using the Reddit API in July 2024. After filtering for cancer-related discussions, 2,059 unique entries remained. We developed annotation guidelines to manually extract variables such as cancer survivorship, family cancer history, cancer types mentioned, risk perceptions, and discussions with physicians. Two domain-experts independently annotated a random sample of 100 entries to create a gold-standard dataset. We then employed iterative prompt engineering with OpenAI's "GPT-4o-mini" on the gold-standard dataset to build an optimized pipeline that allowed us to extract variables from the large dataset. The optimized LLM achieved accuracies above 0.85 for all variables, with precision, recall and F1 score macro averaged > 0.90, indicating balanced performance. Stability testing showed a 95% match rate across runs, confirming consistency. Applying the framework to the full dataset enabled efficient extraction of variables necessary for downstream analysis, costing under $3 and completing in approximately one hour. QuaLLM-Health demonstrates that LLMs can effectively and efficiently extract clinically relevant quantitative data from unstructured social media content. Incorporating human expertise and iterative prompt refinement ensures accuracy and reliability. This methodology can be adapted for large-scale analysis of patient-generated data across various health domains, facilitating valuable insights for healthcare research.
Abstract:Recent work has explored the capability of large language models (LLMs) to identify and correct errors in LLM-generated responses. These refinement approaches frequently evaluate what sizes of models are able to do refinement for what problems, but less attention is paid to what effective feedback for refinement looks like. In this work, we propose looking at refinement with feedback as a composition of three distinct LLM competencies: (1) identification of bad generations; (2) fine-grained natural language feedback generation; (3) refining with fine-grained feedback. The first step can be implemented with a high-performing discriminative model and steps 2 and 3 can be implemented either via prompted or fine-tuned LLMs. A key property of this approach is that the step 2 critique model can give fine-grained feedback about errors, made possible by offloading the discrimination to a separate model in step 1. We show that models of different capabilities benefit from refining with this approach on the task of improving factual consistency of document grounded summaries. Overall, our proposed method consistently outperforms existing end-to-end refinement approaches and current trained models not fine-tuned for factuality critiquing.