Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany, University of Duisburg-Essen, Essen, Germany, Cancer Research Center Cologne Essen
Abstract:Invariant learning is a promising approach to improve domain generalization compared to Empirical Risk Minimization (ERM). However, most invariant learning methods rely on the assumption that training examples are pre-partitioned into different known environments. We instead infer environments without the need for additional annotations, motivated by observations of the properties within the representation space of a trained ERM model. We show the preliminary effectiveness of our approach on the ColoredMNIST benchmark, achieving performance comparable to methods requiring explicit environment labels and on par with an annotation-free method that poses strong restrictions on the ERM reference model.
Abstract:Machine learning models tend to learn spurious features - features that strongly correlate with target labels but are not causal. Existing approaches to mitigate models' dependence on spurious features work in some cases, but fail in others. In this paper, we systematically analyze how and where neural networks encode spurious correlations. We introduce the neuron spurious score, an XAI-based diagnostic measure to quantify a neuron's dependence on spurious features. We analyze both convolutional neural networks (CNNs) and vision transformers (ViTs) using architecture-specific methods. Our results show that spurious features are partially disentangled, but the degree of disentanglement varies across model architectures. Furthermore, we find that the assumptions behind existing mitigation methods are incomplete. Our results lay the groundwork for the development of novel methods to mitigate spurious correlations and make AI models safer to use in practice.
Abstract:The need for interpretability in deep learning has driven interest in counterfactual explanations, which identify minimal changes to an instance that change a model's prediction. Current counterfactual (CF) generation methods require task-specific fine-tuning and produce low-quality text. Large Language Models (LLMs), though effective for high-quality text generation, struggle with label-flipping counterfactuals (i.e., counterfactuals that change the prediction) without fine-tuning. We introduce two simple classifier-guided approaches to support counterfactual generation by LLMs, eliminating the need for fine-tuning while preserving the strengths of LLMs. Despite their simplicity, our methods outperform state-of-the-art counterfactual generation methods and are effective across different LLMs, highlighting the benefits of guiding counterfactual generation by LLMs with classifier information. We further show that data augmentation by our generated CFs can improve a classifier's robustness. Our analysis reveals a critical issue in counterfactual generation by LLMs: LLMs rely on parametric knowledge rather than faithfully following the classifier.
Abstract:Large Language Models (LLMs) excel at text summarization, a task that requires models to select content based on its importance. However, the exact notion of salience that LLMs have internalized remains unclear. To bridge this gap, we introduce an explainable framework to systematically derive and investigate information salience in LLMs through their summarization behavior. Using length-controlled summarization as a behavioral probe into the content selection process, and tracing the answerability of Questions Under Discussion throughout, we derive a proxy for how models prioritize information. Our experiments on 13 models across four datasets reveal that LLMs have a nuanced, hierarchical notion of salience, generally consistent across model families and sizes. While models show highly consistent behavior and hence salience patterns, this notion of salience cannot be accessed through introspection, and only weakly correlates with human perceptions of information salience.
Abstract:The growing interest in eXplainable Artificial Intelligence (XAI) has prompted research into models with built-in interpretability, the most prominent of which are part-prototype models. Part-Prototype Models (PPMs) make decisions by comparing an input image to a set of learned prototypes, providing human-understandable explanations in the form of ``this looks like that''. Despite their inherent interpretability, PPMS are not yet considered a valuable alternative to post-hoc models. In this survey, we investigate the reasons for this and provide directions for future research. We analyze papers from 2019 to 2024, and derive a taxonomy of the challenges that current PPMS face. Our analysis shows that the open challenges are quite diverse. The main concern is the quality and quantity of prototypes. Other concerns are the lack of generalization to a variety of tasks and contexts, and general methodological issues, including non-standardized evaluation. We provide ideas for future research in five broad directions: improving predictive performance, developing novel architectures grounded in theory, establishing frameworks for human-AI collaboration, aligning models with humans, and establishing metrics and benchmarks for evaluation. We hope that this survey will stimulate research and promote intrinsically interpretable models for application domains. Our list of surveyed papers is available at https://github.com/aix-group/ppm-survey.
Abstract:Large Language Models (LLMs) contain large amounts of facts about the world. These facts can become outdated over time, which has led to the development of knowledge editing methods (KEs) that can change specific facts in LLMs with limited side effects. This position paper argues that editing LLMs poses serious safety risks that have been largely overlooked. First, we note the fact that KEs are widely available, computationally inexpensive, highly performant, and stealthy makes them an attractive tool for malicious actors. Second, we discuss malicious use cases of KEs, showing how KEs can be easily adapted for a variety of malicious purposes. Third, we highlight vulnerabilities in the AI ecosystem that allow unrestricted uploading and downloading of updated models without verification. Fourth, we argue that a lack of social and institutional awareness exacerbates this risk, and discuss the implications for different stakeholders. We call on the community to (i) research tamper-resistant models and countermeasures against malicious model editing, and (ii) actively engage in securing the AI ecosystem.
Abstract:In this work, we evaluate annotator disagreement in Word-in-Context (WiC) tasks exploring the relationship between contextual meaning and disagreement as part of the CoMeDi shared task competition. While prior studies have modeled disagreement by analyzing annotator attributes with single-sentence inputs, this shared task incorporates WiC to bridge the gap between sentence-level semantic representation and annotator judgment variability. We describe three different methods that we developed for the shared task, including a feature enrichment approach that combines concatenation, element-wise differences, products, and cosine similarity, Euclidean and Manhattan distances to extend contextual embedding representations, a transformation by Adapter blocks to obtain task-specific representations of contextual embeddings, and classifiers of varying complexities, including ensembles. The comparison of our methods demonstrates improved performance for methods that include enriched and task-specfic features. While the performance of our method falls short in comparison to the best system in subtask 1 (OGWiC), it is competitive to the official evaluation results in subtask 2 (DisWiC).
Abstract:Pre-trained Language Models (PLMs) encode various facts about the world at their pre-training phase as they are trained to predict the next or missing word in a sentence. There has a been an interest in quantifying and improving the amount of facts that can be extracted from PLMs, as they have been envisioned to act as soft knowledge bases, which can be queried in natural language. Different approaches exist to enhance fact retrieval from PLM. Recent work shows that the hidden states of PLMs can be leveraged to determine the truthfulness of the PLMs' inputs. Leveraging this finding to improve factual knowledge retrieval remains unexplored. In this work, we investigate the use of a helper model to improve fact retrieval. The helper model assesses the truthfulness of an input based on the corresponding hidden states representations from the PLMs. We evaluate this approach on several masked PLMs and show that it enhances fact retrieval by up to 33\%. Our findings highlight the potential of hidden states representations from PLMs in improving their factual knowledge retrieval.
Abstract:In-context knowledge editing (IKE) enables efficient modification of large language model (LLM) outputs without parameter changes and at zero-cost. However, it can be misused to manipulate responses opaquely, e.g., insert misinformation or offensive content. Such malicious interventions could be incorporated into high-level wrapped APIs where the final input prompt is not shown to end-users. To address this issue, we investigate the detection and reversal of IKE-edits. First, we demonstrate that IKE-edits can be detected with high accuracy (F1 > 80\%) using only the top-10 output probabilities of the next token, even in a black-box setting, e.g. proprietary LLMs with limited output information. Further, we introduce the novel task of reversing IKE-edits using specially tuned reversal tokens. We explore using both continuous and discrete reversal tokens, achieving over 80\% accuracy in recovering original, unedited outputs across multiple LLMs. Our continuous reversal tokens prove particularly effective, with minimal impact on unedited prompts. Through analysis of output distributions, attention patterns, and token rankings, we provide insights into IKE's effects on LLMs and how reversal tokens mitigate them. This work represents a significant step towards enhancing LLM resilience against potential misuse of in-context editing, improving their transparency and trustworthiness.
Abstract:Machine learning models are known to learn spurious correlations, i.e., features having strong relations with class labels but no causal relation. Relying on those correlations leads to poor performance in the data groups without these correlations and poor generalization ability. To improve the robustness of machine learning models to spurious correlations, we propose an approach to extract a subnetwork from a fully trained network that does not rely on spurious correlations. The subnetwork is found by the assumption that data points with the same spurious attribute will be close to each other in the representation space when training with ERM, then we employ supervised contrastive loss in a novel way to force models to unlearn the spurious connections. The increase in the worst-group performance of our approach contributes to strengthening the hypothesis that there exists a subnetwork in a fully trained dense network that is responsible for using only invariant features in classification tasks, therefore erasing the influence of spurious features even in the setup of multi spurious attributes and no prior knowledge of attributes labels.