Abstract:Six-dimensional movable antenna (6DMA) is an innovative and transformative technology to improve wireless network capacity by adjusting the 3D positions and 3D rotations of antennas/surfaces (sub-arrays) based on the channel spatial distribution. For optimization of the antenna positions and rotations, the acquisition of statistical channel state information (CSI) is essential for 6DMA systems. In this paper, we unveil for the first time a new \textbf{\textit{directional sparsity}} property of the 6DMA channels between the base station (BS) and the distributed users, where each user has significant channel gains only with a (small) subset of 6DMA position-rotation pairs, which can receive direct/reflected signals from the user. By exploiting this property, a covariance-based algorithm is proposed for estimating the statistical CSI in terms of the average channel power at a small number of 6DMA positions and rotations. Based on such limited channel power estimation, the average channel powers for all possible 6DMA positions and rotations in the BS movement region are reconstructed by further estimating the multi-path average power and direction-of-arrival (DOA) vectors of all users. Simulation results show that the proposed directional sparsity-based algorithm can achieve higher channel power estimation accuracy than existing benchmark schemes, while requiring a lower pilot overhead.
Abstract:To support emerging language-based applications using dispersed and heterogeneous computing resources, the hybrid language model (HLM) offers a promising architecture, where an on-device small language model (SLM) generates draft tokens that are validated and corrected by a remote large language model (LLM). However, the original HLM suffers from substantial communication overhead, as the LLM requires the SLM to upload the full vocabulary distribution for each token. Moreover, both communication and computation resources are wasted when the LLM validates tokens that are highly likely to be accepted. To overcome these limitations, we propose communication-efficient and uncertainty-aware HLM (CU-HLM). In CU-HLM, the SLM transmits truncated vocabulary distributions only when its output uncertainty is high. We validate the feasibility of this opportunistic transmission by discovering a strong correlation between SLM's uncertainty and LLM's rejection probability. Furthermore, we theoretically derive optimal uncertainty thresholds and optimal vocabulary truncation strategies. Simulation results show that, compared to standard HLM, CU-HLM achieves up to 206$\times$ higher token throughput by skipping 74.8% transmissions with 97.4% vocabulary compression, while maintaining 97.4% accuracy.
Abstract:Semantic communication (SemCom) has recently emerged as a promising paradigm for next-generation wireless systems. Empowered by advanced artificial intelligence (AI) technologies, SemCom has achieved significant improvements in transmission quality and efficiency. However, existing SemCom systems either rely on training over large datasets and specific channel conditions or suffer from performance degradation under channel noise when operating in a training-free manner. To address these issues, we explore the use of generative diffusion models (GDMs) as training-free SemCom systems. Specifically, we design a semantic encoding and decoding method based on the inversion and sampling process of the denoising diffusion implicit model (DDIM), which introduces a two-stage forward diffusion process, split between the transmitter and receiver to enhance robustness against channel noise. Moreover, we optimize sampling steps to compensate for the increased noise level caused by channel noise. We also conduct a brief analysis to provide insights about this design. Simulations on the Kodak dataset validate that the proposed system outperforms the existing baseline SemCom systems across various metrics.
Abstract:Most existing video anomaly detectors rely solely on RGB frames, which lack the temporal resolution needed to capture abrupt or transient motion cues, key indicators of anomalous events. To address this limitation, we propose Image-Event Fusion for Video Anomaly Detection (IEF-VAD), a framework that synthesizes event representations directly from RGB videos and fuses them with image features through a principled, uncertainty-aware process. The system (i) models heavy-tailed sensor noise with a Student`s-t likelihood, deriving value-level inverse-variance weights via a Laplace approximation; (ii) applies Kalman-style frame-wise updates to balance modalities over time; and (iii) iteratively refines the fused latent state to erase residual cross-modal noise. Without any dedicated event sensor or frame-level labels, IEF-VAD sets a new state of the art across multiple real-world anomaly detection benchmarks. These findings highlight the utility of synthetic event representations in emphasizing motion cues that are often underrepresented in RGB frames, enabling accurate and robust video understanding across diverse applications without requiring dedicated event sensors. Code and models are available at https://github.com/EavnJeong/IEF-VAD.
Abstract:Token communication (TC) is poised to play a pivotal role in emerging language-driven applications such as AI-generated content (AIGC) and wireless language models (LLMs). However, token loss caused by channel noise can severely degrade task performance. To address this, in this article, we focus on the problem of semantics-aware packetization and develop a novel algorithm, termed semantic packet aggregation with genetic beam search (SemPA-GBeam), which aims to maximize the average token similarity (ATS) over erasure channels. Inspired from the genetic algorithm (GA) and the beam search algorithm, SemPA-GBeam iteratively optimizes token grouping for packetization within a fixed number of groups (i.e., fixed beam width in beam search) while randomly swapping a fraction of tokens (i.e., mutation in GA). Experiments on the MS-COCO dataset demonstrate that SemPA-GBeam achieves ATS and LPIPS scores comparable to exhaustive search while reducing complexity by more than 20x.
Abstract:Text-based communication is expected to be prevalent in 6G applications such as wireless AI-generated content (AIGC). Motivated by this, this paper addresses the challenges of transmitting text prompts over erasure channels for a text-to-image AIGC task by developing the semantic segmentation and repeated transmission (SMART) algorithm. SMART groups words in text prompts into packets, prioritizing the task-specific significance of semantics within these packets, and optimizes the number of repeated transmissions. Simulation results show that SMART achieves higher similarities in received texts and generated images compared to a character-level packetization baseline, while reducing computing latency by orders of magnitude compared to an exhaustive search baseline.
Abstract:Existing wireless video transmission schemes directly conduct video coding in pixel level, while neglecting the inner semantics contained in videos. In this paper, we propose a wireless video semantic communication framework, abbreviated as WVSC, which integrates the idea of semantic communication into wireless video transmission scenarios. WVSC first encodes original video frames as semantic frames and then conducts video coding based on such compact representations, enabling the video coding in semantic level rather than pixel level. Moreover, to further reduce the communication overhead, a reference semantic frame is introduced to substitute motion vectors of each frame in common video coding methods. At the receiver, multi-frame compensation (MFC) is proposed to produce compensated current semantic frame with a multi-frame fusion attention module. With both the reference frame transmission and MFC, the bandwidth efficiency improves with satisfying video transmission performance. Experimental results verify the performance gain of WVSC over other DL-based methods e.g. DVSC about 1 dB and traditional schemes about 2 dB in terms of PSNR.
Abstract:Carrier-sense multiple access with collision avoidance in Wi-Fi often leads to contention and interference, thereby increasing packet losses. These challenges have traditionally been modeled as a graph, with stations (STAs) represented as vertices and contention or interference as edges. Graph coloring assigns orthogonal transmission slots to STAs, managing contention and interference, e.g., using the restricted target wake time (RTWT) mechanism introduced in Wi-Fi 7 standards. However, legacy graph models lack flexibility in optimizing these assignments, often failing to minimize slot usage while maintaining reliable transmissions. To address this issue, we propose ScNeuGM, a neural graph modeling (NGM) framework that flexibly trains a neural network (NN) to construct optimal graph models whose coloring corresponds to optimal slot assignments. ScNeuGM is highly scalable to large Wi-Fi networks with massive STA pairs: 1) it utilizes an evolution strategy (ES) to directly optimize the NN parameters based on one network-wise reward signal, avoiding exhaustive edge-wise feedback estimations in all STA pairs; 2) ScNeuGM also leverages a deep hashing function (DHF) to group contending or interfering STA pairs and restricts NGM NN training and inference to pairs within these groups, significantly reducing complexity. Simulations show that the ES-trained NN in ScNeuGM returns near-optimal graphs 4-10 times more often than algorithms requiring edge-wise feedback and reduces 25\% slots than legacy graph constructions. Furthermore, the DHF in ScNeuGM reduces the training and the inference time of NGM by 4 and 8 times, respectively, and the online slot assignment time by 3 times in large networks, and up to 30\% fewer packet losses in dynamic scenarios due to the timely assignments.
Abstract:Wireless time-sensitive networking (WTSN) is essential for Industrial Internet of Things. We address the problem of minimizing time slots needed for WTSN transmissions while ensuring reliability subject to interference constraints -- an NP-hard task. Existing semidefinite programming (SDP) methods can relax and solve the problem but suffer from high polynomial complexity. We propose a sparse interference graph-aided SDP (SIG-SDP) framework that exploits the interference's sparsity arising from attenuated signals between distant user pairs. First, the framework utilizes the sparsity to establish the upper and lower bounds of the minimum number of slots and uses binary search to locate the minimum within the bounds. Here, for each searched slot number, the framework optimizes a positive semidefinite (PSD) matrix indicating how likely user pairs share the same slot, and the constraint feasibility with the optimized PSD matrix further refines the slot search range. Second, the framework designs a matrix multiplicative weights (MMW) algorithm that accelerates the optimization, achieved by only sparsely adjusting interfering user pairs' elements in the PSD matrix while skipping the non-interfering pairs. We also design an online architecture to deploy the framework to adjust slot assignments based on real-time interference measurements. Simulations show that the SIG-SDP framework converges in near-linear complexity and is highly scalable to large networks. The framework minimizes the number of slots with up to 10 times faster computation and up to 100 times lower packet loss rates than compared methods. The online architecture demonstrates how the algorithm complexity impacts dynamic networks' performance.
Abstract:This paper proposes a novel digital deep joint source-channel coding (DeepJSCC) framework that achieves robust performance across diverse communication environments without requiring extensive retraining and prior knowledge of communication environments. Traditional digital DeepJSCC techniques often face challenges in adapting to various communication environments, as they require significant training overhead and large amounts of communication data to develop either multiple specialized models or a single generalized model, in pre-defined communication environments. To address this challenge, in our framework, an error-adaptive blind training strategy is devised, which eliminates the need for prior knowledge of communication environments. This is achieved by modeling the relationship between the encoder's output and the decoder's input using binary symmetric channels, and optimizing bit-flip probabilities by treating them as trainable parameters. In our framework, a training-aware communication strategy is also presented, which dynamically selects the optimal encoder-decoder pair and transmission parameters based on current channel conditions. In particular, in this strategy, an adaptive power and modulation control method is developed to minimize the total transmission power, while maintaining high task performance. Simulation results demonstrate that our framework outperforms existing DeepJSCC methods, achieving higher peak signal-to-noise ratio, lower power consumption, and requiring significantly fewer encoder-decoder pairs for adaptation.