Abstract:Tokens are fundamental processing units of generative AI (GenAI) and large language models (LLMs), and token communication (TC) is essential for enabling remote AI-generate content (AIGC) and wireless LLM applications. Unlike traditional bits, each of which is independently treated, the semantics of each token depends on its surrounding context tokens. This inter-token dependency makes TC vulnerable to outage channels, where the loss of a single token can significantly distort the original message semantics. Motivated by this, this paper focuses on optimizing token packetization to maximize the average token similarity (ATS) between the original and received token messages under outage channels. Due to inter-token dependency, this token grouping problem is combinatorial, with complexity growing exponentially with message length. To address this, we propose a novel framework of semantic packet aggregation with lookahead search (SemPA-Look), built on two core ideas. First, it introduces the residual semantic score (RSS) as a token-level surrogate for the message-level ATS, allowing robust semantic preservation even when a certain token packet is lost. Second, instead of full search, SemPA-Look applies a lookahead search-inspired algorithm that samples intra-packet token candidates without replacement (fixed depth), conditioned on inter-packet token candidates sampled with replacement (fixed width), thereby achieving linear complexity. Experiments on a remote AIGC task with the MS-COCO dataset (text captioned images) demonstrate that SemPA-Look achieves high ATS and LPIPS scores comparable to exhaustive search, while reducing computational complexity by up to 40$\times$. Compared to other linear-complexity algorithms such as the genetic algorithm (GA), SemPA-Look achieves 10$\times$ lower complexity, demonstrating its practicality for remote AIGC and other TC applications.
Abstract:Token communication (TC) is poised to play a pivotal role in emerging language-driven applications such as AI-generated content (AIGC) and wireless language models (LLMs). However, token loss caused by channel noise can severely degrade task performance. To address this, in this article, we focus on the problem of semantics-aware packetization and develop a novel algorithm, termed semantic packet aggregation with genetic beam search (SemPA-GBeam), which aims to maximize the average token similarity (ATS) over erasure channels. Inspired from the genetic algorithm (GA) and the beam search algorithm, SemPA-GBeam iteratively optimizes token grouping for packetization within a fixed number of groups (i.e., fixed beam width in beam search) while randomly swapping a fraction of tokens (i.e., mutation in GA). Experiments on the MS-COCO dataset demonstrate that SemPA-GBeam achieves ATS and LPIPS scores comparable to exhaustive search while reducing complexity by more than 20x.
Abstract:Text-based communication is expected to be prevalent in 6G applications such as wireless AI-generated content (AIGC). Motivated by this, this paper addresses the challenges of transmitting text prompts over erasure channels for a text-to-image AIGC task by developing the semantic segmentation and repeated transmission (SMART) algorithm. SMART groups words in text prompts into packets, prioritizing the task-specific significance of semantics within these packets, and optimizes the number of repeated transmissions. Simulation results show that SMART achieves higher similarities in received texts and generated images compared to a character-level packetization baseline, while reducing computing latency by orders of magnitude compared to an exhaustive search baseline.