Abstract:The creation of high-quality 3D assets, a cornerstone of modern game development, has long been characterized by labor-intensive and specialized workflows. This paper presents Hunyuan3D Studio, an end-to-end AI-powered content creation platform designed to revolutionize the game production pipeline by automating and streamlining the generation of game-ready 3D assets. At its core, Hunyuan3D Studio integrates a suite of advanced neural modules (such as Part-level 3D Generation, Polygon Generation, Semantic UV, etc.) into a cohesive and user-friendly system. This unified framework allows for the rapid transformation of a single concept image or textual description into a fully-realized, production-quality 3D model complete with optimized geometry and high-fidelity PBR textures. We demonstrate that assets generated by Hunyuan3D Studio are not only visually compelling but also adhere to the stringent technical requirements of contemporary game engines, significantly reducing iteration time and lowering the barrier to entry for 3D content creation. By providing a seamless bridge from creative intent to technical asset, Hunyuan3D Studio represents a significant leap forward for AI-assisted workflows in game development and interactive media.
Abstract:Technology research and standardization work of sixth generation (6G) has been carried out worldwide. Channel research is the prerequisite of 6G technology evaluation and optimization. This paper presents a survey and tutorial on channel measurement, modeling, and simulation for 6G. We first highlight the challenges of channel for 6G systems, including higher frequency band, extremely large antenna array, new technology combinations, and diverse application scenarios. A review of channel measurement and modeling for four possible 6G enabling technologies is then presented, i.e., terahertz communication, massive multiple-input multiple-output communication, joint communication and sensing, and reconfigurable intelligent surface. Finally, we introduce a 6G channel simulation platform and provide examples of its implementation. The goal of this paper is to help both professionals and non-professionals know the progress of 6G channel research, understand the 6G channel model, and use it for 6G simulation.
Abstract:Terahertz (THz) communication is envisioned as the possible technology for the sixth-generation (6G) communication system. THz channel propagation characteristics are the basis of designing and evaluating for THz communication system. In this paper, THz channel measurements at 100 GHz and 132 GHz are conducted in an indoor office scenario and an urban microcellular (UMi) scenario, respectively. Based on the measurement, the 3GPP-like channel parameters are extracted and analyzed. Moreover, the parameters models are available for the simulation of the channel impulse response by the geometry-based stochastic model (GBSM). Then, the comparisons between measurement-based parameter models and 3rd Generation Partnership Project (3GPP) channel models are investigated. It is observed that the case with path loss approaching free space exists in the NLoS scenario. Besides, the cluster number are 4 at LoS and 5 at NLoS in the indoor office and 4 at LoS and 3 at NLoS in the UMi, which are much less than 3GPP. The multipath component (MPC) in the THz channel distributes more simpler and more sparsely than the 3GPP millimeter wave (mm-wave) channel models. Furthermore, the ergodic capacity of mm-wave and THz are evaluated by the proposed THz GBSM implementation framework. The THz measurement model predicts the smallest capacity, indicating that high carrier frequency is limited to the single transmission mechanism of reflection and results in the reduction of cluster numbers and ergodic capacity. Generally, these results are helpful to understand and model the THz channel and apply the THz communication technique for 6G.