Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Piao Hu, Jiashuo Jiang, Guodong Lyu, Hao Su

We consider an online two-stage stochastic optimization with long-term constraints over a finite horizon of $T$ periods. At each period, we take the first-stage action, observe a model parameter realization and then take the second-stage action from a feasible set that depends both on the first-stage decision and the model parameter. We aim to minimize the cumulative objective value while guaranteeing that the long-term average second-stage decision belongs to a set. We develop online algorithms for the online two-stage problem from adversarial learning algorithms. Also, the regret bound of our algorithm can be reduced to the regret bound of embedded adversarial learning algorithms. Based on this framework, we obtain new results under various settings. When the model parameters are drawn from unknown non-stationary distributions and we are given machine-learned predictions of the distributions, we develop a new algorithm from our framework with a regret $O(W_T+\sqrt{T})$, where $W_T$ measures the total inaccuracy of the machine-learned predictions. We then develop another algorithm that works when no machine-learned predictions are given and show the performances.

Via

Wanteng Ma, Dong Xia, Jiashuo Jiang

We study the contextual bandits with knapsack (CBwK) problem under the high-dimensional setting where the dimension of the feature is large. The reward of pulling each arm equals the multiplication of a sparse high-dimensional weight vector and the feature of the current arrival, with additional random noise. In this paper, we investigate how to exploit this sparsity structure to achieve improved regret for the CBwK problem. To this end, we first develop an online variant of the hard thresholding algorithm that performs the sparse estimation in an online manner. We further combine our online estimator with a primal-dual framework, where we assign a dual variable to each knapsack constraint and utilize an online learning algorithm to update the dual variable, thereby controlling the consumption of the knapsack capacity. We show that this integrated approach allows us to achieve a sublinear regret that depends logarithmically on the feature dimension, thus improving the polynomial dependency established in the previous literature. We also apply our framework to the high-dimension contextual bandit problem without the knapsack constraint and achieve optimal regret in both the data-poor regime and the data-rich regime. We finally conduct numerical experiments to show the efficient empirical performance of our algorithms under the high dimensional setting.

Via

Jiashuo Jiang

We consider an online two-stage stochastic optimization with long-term constraints over a finite horizon of $T$ periods. At each period, we take the first-stage action, observe a model parameter realization and then take the second-stage action from a feasible set that depends both on the first-stage decision and the model parameter. We aim to minimize the cumulative objective value while guaranteeing that the long-term average second-stage decision belongs to a set. We propose a general algorithmic framework that derives online algorithms for the online two-stage problem from adversarial learning algorithms. Also, the regret bound of our algorithm cam be reduced to the regret bound of embedded adversarial learning algorithms. Based on our framework, we obtain new results under various settings. When the model parameter at each period is drawn from identical distributions, we derive state-of-art regret bound that improves previous bounds under special cases. Our algorithm is also robust to adversarial corruptions of model parameter realizations. When the model parameters are drawn from unknown non-stationary distributions and we are given prior estimates of the distributions, we develop a new algorithm from our framework with a regret $O(W_T+\sqrt{T})$, where $W_T$ measures the total inaccuracy of the prior estimates.

Via

Jiashuo Jiang, Will Ma, Jiawei Zhang

We study the classical Network Revenue Management (NRM) problem with accept/reject decisions and $T$ IID arrivals. We consider a distributional form where each arrival must fall under a finite number of possible categories, each with a deterministic resource consumption vector, but a random value distributed continuously over an interval. We develop an online algorithm that achieves $O(\log^2 T)$ regret under this model, with no further assumptions. We develop another online algorithm that achieves an improved $O(\log T)$ regret, with only a second-order growth assumption. To our knowledge, these are the first results achieving logarithmic-level regret in a continuous-distribution NRM model without further ``non-degeneracy'' assumptions. Our results are achieved via new techniques including: a new method of bounding myopic regret, a ``semi-fluid'' relaxation of the offline allocation, and an improved bound on the ``dual convergence''.

Via

Boxiao Chen, Jiashuo Jiang, Jiawei Zhang, Zhengyuan Zhou

We consider a stochastic lost-sales inventory control system with a lead time $L$ over a planning horizon $T$. Supply is uncertain, and is a function of the order quantity (due to random yield/capacity, etc). We aim to minimize the $T$-period cost, a problem that is known to be computationally intractable even under known distributions of demand and supply. In this paper, we assume that both the demand and supply distributions are unknown and develop a computationally efficient online learning algorithm. We show that our algorithm achieves a regret (i.e. the performance gap between the cost of our algorithm and that of an optimal policy over $T$ periods) of $O(L+\sqrt{T})$ when $L\geq\log(T)$. We do so by 1) showing our algorithm cost is higher by at most $O(L+\sqrt{T})$ for any $L\geq 0$ compared to an optimal constant-order policy under complete information (a well-known and widely-used algorithm) and 2) leveraging its known performance guarantee from the existing literature. To the best of our knowledge, a finite-sample $O(\sqrt{T})$ (and polynomial in $L$) regret bound when benchmarked against an optimal policy is not known before in the online inventory control literature. A key challenge in this learning problem is that both demand and supply data can be censored; hence only truncated values are observable. We circumvent this challenge by showing that the data generated under an order quantity $q^2$ allows us to simulate the performance of not only $q^2$ but also $q^1$ for all $q^1<q^2$, a key observation to obtain sufficient information even under data censoring. By establishing a high probability coupling argument, we are able to evaluate and compare the performance of different order policies at their steady state within a finite time horizon. Since the problem lacks convexity, we develop an active elimination method that adaptively rules out suboptimal solutions.

Via

Shang Liu, Jiashuo Jiang, Xiaocheng Li

In this paper, we study the problem of bandits with knapsacks (BwK) in a non-stationary environment. The BwK problem generalizes the multi-arm bandit (MAB) problem to model the resource consumption associated with playing each arm. At each time, the decision maker/player chooses to play an arm, and s/he will receive a reward and consume certain amount of resource from each of the multiple resource types. The objective is to maximize the cumulative reward over a finite horizon subject to some knapsack constraints on the resources. Existing works study the BwK problem under either a stochastic or adversarial environment. Our paper considers a non-stationary environment which continuously interpolates between these two extremes. We first show that the traditional notion of variation budget is insufficient to characterize the non-stationarity of the BwK problem for a sublinear regret due to the presence of the constraints, and then we propose a new notion of global non-stationarity measure. We employ both non-stationarity measures to derive upper and lower bounds for the problem. Our results are based on a primal-dual analysis of the underlying linear programs and highlight the interplay between the constraints and the non-stationarity. Finally, we also extend the non-stationarity measure to the problem of online convex optimization with constraints and obtain new regret bounds accordingly.

Via

Jiashuo Jiang, Xiaocheng Li, Jiawei Zhang

We consider a general online stochastic optimization problem with multiple budget constraints over a horizon of finite time periods. In each time period, a reward function and multiple cost functions are revealed, and the decision maker needs to specify an action from a convex and compact action set to collect the reward and consume the budget. Each cost function corresponds to the consumption of one budget. In each period, the reward and cost functions are drawn from an unknown distribution, which is non-stationary across time. The objective of the decision maker is to maximize the cumulative reward subject to the budget constraints. This formulation captures a wide range of applications including online linear programming and network revenue management, among others. In this paper, we consider two settings: (i) a data-driven setting where the true distribution is unknown but a prior estimate (possibly inaccurate) is available; (ii) an uninformative setting where the true distribution is completely unknown. We propose a unified Wasserstein-distance based measure to quantify the inaccuracy of the prior estimate in setting (i) and the non-stationarity of the system in setting (ii). We show that the proposed measure leads to a necessary and sufficient condition for the attainability of a sublinear regret in both settings. For setting (i), we propose a new algorithm, which takes a primal-dual perspective and integrates the prior information of the underlying distributions into an online gradient descent procedure in the dual space. The algorithm also naturally extends to the uninformative setting (ii). Under both settings, we show the corresponding algorithm achieves a regret of optimal order. In numerical experiments, we demonstrate how the proposed algorithms can be naturally integrated with the re-solving technique to further boost the empirical performance.

Via