Abstract:Real-time network traffic forecasting is crucial for network management and early resource allocation. Existing network traffic forecasting approaches operate under the assumption that the network traffic data is fully observed. However, in practical scenarios, the collected data are often incomplete due to various human and natural factors. In this paper, we propose a generative model approach for real-time network traffic forecasting with missing data. Firstly, we model the network traffic forecasting task as a tensor completion problem. Secondly, we incorporate a pre-trained generative model to achieve the low-rank structure commonly associated with tensor completion. The generative model effectively captures the intrinsic low-rank structure of network traffic data during pre-training and enables the mapping from a compact latent representation to the tensor space. Thirdly, rather than directly optimizing the high-dimensional tensor, we optimize its latent representation, which simplifies the optimization process and enables real-time forecasting. We also establish a theoretical recovery guarantee that quantifies the error bound of the proposed approach. Experiments on real-world datasets demonstrate that our approach achieves accurate network traffic forecasting within 100 ms, with a mean absolute error (MAE) below 0.002, as validated on the Abilene dataset.
Abstract:With the proliferation of Internet of Things (IoT) devices, the demand for addressing complex optimization challenges has intensified. The Lyapunov Drift-Plus-Penalty algorithm is a widely adopted approach for ensuring queue stability, and some research has preliminarily explored its integration with reinforcement learning (RL). In this paper, we investigate the adaptation of the Lyapunov Drift-Plus-Penalty algorithm for RL applications, deriving an effective method for combining Lyapunov Drift-Plus-Penalty with RL under a set of common and reasonable conditions through rigorous theoretical analysis. Unlike existing approaches that directly merge the two frameworks, our proposed algorithm, termed Lyapunov drift-plus-penalty method tailored for reinforcement learning with queue stability (LDPTRLQ) algorithm, offers theoretical superiority by effectively balancing the greedy optimization of Lyapunov Drift-Plus-Penalty with the long-term perspective of RL. Simulation results for multiple problems demonstrate that LDPTRLQ outperforms the baseline methods using the Lyapunov drift-plus-penalty method and RL, corroborating the validity of our theoretical derivations. The results also demonstrate that our proposed algorithm outperforms other benchmarks in terms of compatibility and stability.