Abstract:Pre-training robot policies with a rich set of skills can substantially accelerate the learning of downstream tasks. Prior works have defined pre-training tasks via natural language instructions, but doing so requires tedious human annotation of hundreds of thousands of instructions. Thus, we propose SPRINT, a scalable offline policy pre-training approach which substantially reduces the human effort needed for pre-training a diverse set of skills. Our method uses two core ideas to automatically expand a base set of pre-training tasks: instruction relabeling via large language models and cross-trajectory skill chaining through offline reinforcement learning. As a result, SPRINT pre-training equips robots with a much richer repertoire of skills. Experimental results in a household simulator and on a real robot kitchen manipulation task show that SPRINT leads to substantially faster learning of new long-horizon tasks than previous pre-training approaches. Website at https://clvrai.com/sprint.
Abstract:Open-vocabulary segmentation of 3D scenes is a fundamental function of human perception and thus a crucial objective in computer vision research. However, this task is heavily impeded by the lack of large-scale and diverse 3D open-vocabulary segmentation datasets for training robust and generalizable models. Distilling knowledge from pre-trained 2D open-vocabulary segmentation models helps but it compromises the open-vocabulary feature significantly as the 2D models are mostly finetuned with close-vocabulary datasets. We tackle the challenges in 3D open-vocabulary segmentation by exploiting the open-vocabulary multimodal knowledge and object reasoning capability of pre-trained foundation models CLIP and DINO, without necessitating any fine-tuning. Specifically, we distill open-vocabulary visual and textual knowledge from CLIP into a neural radiance field (NeRF) which effectively lifts 2D features into view-consistent 3D segmentation. Furthermore, we introduce the Relevancy-Distribution Alignment loss and Feature-Distribution Alignment loss to respectively mitigate the ambiguities of CLIP features and distill precise object boundaries from DINO features, eliminating the need for segmentation annotations during training. Extensive experiments show that our method even outperforms fully supervised models trained with segmentation annotations, suggesting that 3D open-vocabulary segmentation can be effectively learned from 2D images and text-image pairs.
Abstract:Audio-driven talking face generation, which aims to synthesize talking faces with realistic facial animations (including accurate lip movements, vivid facial expression details and natural head poses) corresponding to the audio, has achieved rapid progress in recent years. However, most existing work focuses on generating lip movements only without handling the closely correlated facial expressions, which degrades the realism of the generated faces greatly. This paper presents DIRFA, a novel method that can generate talking faces with diverse yet realistic facial animations from the same driving audio. To accommodate fair variation of plausible facial animations for the same audio, we design a transformer-based probabilistic mapping network that can model the variational facial animation distribution conditioned upon the input audio and autoregressively convert the audio signals into a facial animation sequence. In addition, we introduce a temporally-biased mask into the mapping network, which allows to model the temporal dependency of facial animations and produce temporally smooth facial animation sequence. With the generated facial animation sequence and a source image, photo-realistic talking faces can be synthesized with a generic generation network. Extensive experiments show that DIRFA can generate talking faces with realistic facial animations effectively.
Abstract:Facial expression editing has attracted increasing attention with the advance of deep neural networks in recent years. However, most existing methods suffer from compromised editing fidelity and limited usability as they either ignore pose variations (unrealistic editing) or require paired training data (not easy to collect) for pose controls. This paper presents POCE, an innovative pose-controllable expression editing network that can generate realistic facial expressions and head poses simultaneously with just unpaired training images. POCE achieves the more accessible and realistic pose-controllable expression editing by mapping face images into UV space, where facial expressions and head poses can be disentangled and edited separately. POCE has two novel designs. The first is self-supervised UV completion that allows to complete UV maps sampled under different head poses, which often suffer from self-occlusions and missing facial texture. The second is weakly-supervised UV editing that allows to generate new facial expressions with minimal modification of facial identity, where the synthesized expression could be controlled by either an expression label or directly transplanted from a reference UV map via feature transfer. Extensive experiments show that POCE can learn from unpaired face images effectively, and the learned model can generate realistic and high-fidelity facial expressions under various new poses.
Abstract:3D style transfer aims to render stylized novel views of a 3D scene with multi-view consistency. However, most existing work suffers from a three-way dilemma over accurate geometry reconstruction, high-quality stylization, and being generalizable to arbitrary new styles. We propose StyleRF (Style Radiance Fields), an innovative 3D style transfer technique that resolves the three-way dilemma by performing style transformation within the feature space of a radiance field. StyleRF employs an explicit grid of high-level features to represent 3D scenes, with which high-fidelity geometry can be reliably restored via volume rendering. In addition, it transforms the grid features according to the reference style which directly leads to high-quality zero-shot style transfer. StyleRF consists of two innovative designs. The first is sampling-invariant content transformation that makes the transformation invariant to the holistic statistics of the sampled 3D points and accordingly ensures multi-view consistency. The second is deferred style transformation of 2D feature maps which is equivalent to the transformation of 3D points but greatly reduces memory footprint without degrading multi-view consistency. Extensive experiments show that StyleRF achieves superior 3D stylization quality with precise geometry reconstruction and it can generalize to various new styles in a zero-shot manner.
Abstract:Quantizing images into discrete representations has been a fundamental problem in unified generative modeling. Predominant approaches learn the discrete representation either in a deterministic manner by selecting the best-matching token or in a stochastic manner by sampling from a predicted distribution. However, deterministic quantization suffers from severe codebook collapse and misalignment with inference stage while stochastic quantization suffers from low codebook utilization and perturbed reconstruction objective. This paper presents a regularized vector quantization framework that allows to mitigate above issues effectively by applying regularization from two perspectives. The first is a prior distribution regularization which measures the discrepancy between a prior token distribution and the predicted token distribution to avoid codebook collapse and low codebook utilization. The second is a stochastic mask regularization that introduces stochasticity during quantization to strike a good balance between inference stage misalignment and unperturbed reconstruction objective. In addition, we design a probabilistic contrastive loss which serves as a calibrated metric to further mitigate the perturbed reconstruction objective. Extensive experiments show that the proposed quantization framework outperforms prevailing vector quantization methods consistently across different generative models including auto-regressive models and diffusion models.
Abstract:Recently, single image super-resolution (SR) under large scaling factors has witnessed impressive progress by introducing pre-trained generative adversarial networks (GANs) as priors. However, most GAN-Priors based SR methods are constrained by an attribute disentanglement problem in inverted latent codes which directly leads to mismatches of visual attributes in the generator layers and further degraded reconstruction. In addition, stochastic noises fed to the generator are employed for unconditional detail generation, which tends to produce unfaithful details that compromise the fidelity of the generated SR image. We design LAREN, a LAtent multi-Relation rEasoNing technique that achieves superb large-factor SR through graph-based multi-relation reasoning in latent space. LAREN consists of two innovative designs. The first is graph-based disentanglement that constructs a superior disentangled latent space via hierarchical multi-relation reasoning. The second is graph-based code generation that produces image-specific codes progressively via recursive relation reasoning which enables prior GANs to generate desirable image details. Extensive experiments show that LAREN achieves superior large-factor image SR and outperforms the state-of-the-art consistently across multiple benchmarks.
Abstract:Visual relocalization has been a widely discussed problem in 3D vision: given a pre-constructed 3D visual map, the 6 DoF (Degrees-of-Freedom) pose of a query image is estimated. Relocalization in large-scale indoor environments enables attractive applications such as augmented reality and robot navigation. However, appearance changes fast in such environments when the camera moves, which is challenging for the relocalization system. To address this problem, we propose a virtual view synthesis-based approach, RenderNet, to enrich the database and refine poses regarding this particular scenario. Instead of rendering real images which requires high-quality 3D models, we opt to directly render the needed global and local features of virtual viewpoints and apply them in the subsequent image retrieval and feature matching operations respectively. The proposed method can largely improve the performance in large-scale indoor environments, e.g., achieving an improvement of 7.1\% and 12.2\% on the Inloc dataset.
Abstract:Deep generative models have achieved conspicuous progress in realistic image synthesis with multifarious conditional inputs, while generating diverse yet high-fidelity images remains a grand challenge in conditional image generation. This paper presents a versatile framework for conditional image generation which incorporates the inductive bias of CNNs and powerful sequence modeling of auto-regression that naturally leads to diverse image generation. Instead of independently quantizing the features of multiple domains as in prior research, we design an integrated quantization scheme with a variational regularizer that mingles the feature discretization in multiple domains, and markedly boosts the auto-regressive modeling performance. Notably, the variational regularizer enables to regularize feature distributions in incomparable latent spaces by penalizing the intra-domain variations of distributions. In addition, we design a Gumbel sampling strategy that allows to incorporate distribution uncertainty into the auto-regressive training procedure. The Gumbel sampling substantially mitigates the exposure bias that often incurs misalignment between the training and inference stages and severely impairs the inference performance. Extensive experiments over multiple conditional image generation tasks show that our method achieves superior diverse image generation performance qualitatively and quantitatively as compared with the state-of-the-art.
Abstract:Leveraging StyleGAN's expressivity and its disentangled latent codes, existing methods can achieve realistic editing of different visual attributes such as age and gender of facial images. An intriguing yet challenging problem arises: Can generative models achieve counterfactual editing against their learnt priors? Due to the lack of counterfactual samples in natural datasets, we investigate this problem in a text-driven manner with Contrastive-Language-Image-Pretraining (CLIP), which can offer rich semantic knowledge even for various counterfactual concepts. Different from in-domain manipulation, counterfactual manipulation requires more comprehensive exploitation of semantic knowledge encapsulated in CLIP as well as more delicate handling of editing directions for avoiding being stuck in local minimum or undesired editing. To this end, we design a novel contrastive loss that exploits predefined CLIP-space directions to guide the editing toward desired directions from different perspectives. In addition, we design a simple yet effective scheme that explicitly maps CLIP embeddings (of target text) to the latent space and fuses them with latent codes for effective latent code optimization and accurate editing. Extensive experiments show that our design achieves accurate and realistic editing while driving by target texts with various counterfactual concepts.