Abstract:Oriented object detection in remote sensing images is a challenging task due to objects being distributed in multi-orientation. Recently, end-to-end transformer-based methods have achieved success by eliminating the need for post-processing operators compared to traditional CNN-based methods. However, directly extending transformers to oriented object detection presents three main issues: 1) objects rotate arbitrarily, necessitating the encoding of angles along with position and size; 2) the geometric relations of oriented objects are lacking in self-attention, due to the absence of interaction between content and positional queries; and 3) oriented objects cause misalignment, mainly between values and positional queries in cross-attention, making accurate classification and localization difficult. In this paper, we propose an end-to-end transformer-based oriented object detector, consisting of three dedicated modules to address these issues. First, Gaussian positional encoding is proposed to encode the angle, position, and size of oriented boxes using Gaussian distributions. Second, Wasserstein self-attention is proposed to introduce geometric relations and facilitate interaction between content and positional queries by utilizing Gaussian Wasserstein distance scores. Third, oriented cross-attention is proposed to align values and positional queries by rotating sampling points around the positional query according to their angles. Experiments on six datasets DIOR-R, a series of DOTA, HRSC2016 and ICDAR2015 show the effectiveness of our approach. Compared with previous end-to-end detectors, the OrientedFormer gains 1.16 and 1.21 AP$_{50}$ on DIOR-R and DOTA-v1.0 respectively, while reducing training epochs from 3$\times$ to 1$\times$. The codes are available at https://github.com/wokaikaixinxin/OrientedFormer.
Abstract:Audio analysis is useful in many application scenarios. The state-of-the-art audio analysis approaches assume that the data distribution at training and deployment time will be the same. However, due to various real-life environmental factors, the data may encounter drift in its distribution or can encounter new classes in the late future. Thus, a one-time trained model might not perform adequately. In this paper, we characterize continual learning (CL) approaches in audio analysis. In this paper, we characterize continual learning (CL) approaches, intended to tackle catastrophic forgetting arising due to drifts. As there is no CL dataset for audio analysis, we use DCASE 2020 to 2023 datasets to create various CL scenarios for audio-based monitoring tasks. We have investigated the following CL and non-CL approaches: EWC, LwF, SI, GEM, A-GEM, GDumb, Replay, Naive, cumulative, and joint training. The study is very beneficial for researchers and practitioners working in the area of audio analysis for developing adaptive models. We observed that Replay achieved better results than other methods in the DCASE challenge data. It achieved an accuracy of 70.12% for the domain incremental scenario and an accuracy of 96.98% for the class incremental scenario.
Abstract:Over the last few years, 360$\degree$ video traffic on the network has grown significantly. A key challenge of 360$\degree$ video playback is ensuring a high quality of experience (QoE) with limited network bandwidth. Currently, most studies focus on tile-based adaptive bitrate (ABR) streaming based on single viewport prediction to reduce bandwidth consumption. However, the performance of models for single-viewpoint prediction is severely limited by the inherent uncertainty in head movement, which can not cope with the sudden movement of users very well. This paper first presents a multimodal spatial-temporal attention transformer to generate multiple viewpoint trajectories with their probabilities given a historical trajectory. The proposed method models viewpoint prediction as a classification problem and uses attention mechanisms to capture the spatial and temporal characteristics of input video frames and viewpoint trajectories for multi-viewpoint prediction. After that, a multi-agent deep reinforcement learning (MADRL)-based ABR algorithm utilizing multi-viewpoint prediction for 360$\degree$ video streaming is proposed for maximizing different QoE objectives under various network conditions. We formulate the ABR problem as a decentralized partially observable Markov decision process (Dec-POMDP) problem and present a MAPPO algorithm based on centralized training and decentralized execution (CTDE) framework to solve the problem. The experimental results show that our proposed method improves the defined QoE metric by up to 85.5\% compared to existing ABR methods.
Abstract:Test-time adaptation with pre-trained vision-language models has attracted increasing attention for tackling distribution shifts during the test time. Though prior studies have achieved very promising performance, they involve intensive computation which is severely unaligned with test-time adaptation. We design TDA, a training-free dynamic adapter that enables effective and efficient test-time adaptation with vision-language models. TDA works with a lightweight key-value cache that maintains a dynamic queue with few-shot pseudo labels as values and the corresponding test-sample features as keys. Leveraging the key-value cache, TDA allows adapting to test data gradually via progressive pseudo label refinement which is super-efficient without incurring any backpropagation. In addition, we introduce negative pseudo labeling that alleviates the adverse impact of pseudo label noises by assigning pseudo labels to certain negative classes when the model is uncertain about its pseudo label predictions. Extensive experiments over two benchmarks demonstrate TDA's superior effectiveness and efficiency as compared with the state-of-the-art. The code has been released in \url{https://kdiaaa.github.io/tda/}.
Abstract:On March 18, 2024, NVIDIA unveiled Project GR00T, a general-purpose multimodal generative AI model designed specifically for training humanoid robots. Preceding this event, Tesla's unveiling of the Optimus Gen 2 humanoid robot on December 12, 2023, underscored the profound impact robotics is poised to have on reshaping various facets of our daily lives. While robots have long dominated industrial settings, their presence within our homes is a burgeoning phenomenon. This can be attributed, in part, to the complexities of domestic environments and the challenges of creating robots that can seamlessly integrate into our daily routines.
Abstract:As virtual environments continue to advance, the demand for immersive and emotionally engaging experiences has grown. Addressing this demand, we introduce Emotion enabled Virtual avatar mapping using Optimized KnowledgE distillation (EVOKE), a lightweight emotion recognition framework designed for the seamless integration of emotion recognition into 3D avatars within virtual environments. Our approach leverages knowledge distillation involving multi-label classification on the publicly available DEAP dataset, which covers valence, arousal, and dominance as primary emotional classes. Remarkably, our distilled model, a CNN with only two convolutional layers and 18 times fewer parameters than the teacher model, achieves competitive results, boasting an accuracy of 87% while demanding far less computational resources. This equilibrium between performance and deployability positions our framework as an ideal choice for virtual environment systems. Furthermore, the multi-label classification outcomes are utilized to map emotions onto custom-designed 3D avatars.
Abstract:Recent advancements in cognitive computing, with the integration of deep learning techniques, have facilitated the development of intelligent cognitive systems (ICS). This is particularly beneficial in the context of rail defect detection, where the ICS would emulate human-like analysis of image data for defect patterns. Despite the success of Convolutional Neural Networks (CNN) in visual defect classification, the scarcity of large datasets for rail defect detection remains a challenge due to infrequent accident events that would result in defective parts and images. Contemporary researchers have addressed this data scarcity challenge by exploring rule-based and generative data augmentation models. Among these, Variational Autoencoder (VAE) models can generate realistic data without extensive baseline datasets for noise modeling. This study proposes a VAE-based synthetic image generation technique for rail defects, incorporating weight decay regularization and image reconstruction loss to prevent overfitting. The proposed method is applied to create a synthetic dataset for the Canadian Pacific Railway (CPR) with just 50 real samples across five classes. Remarkably, 500 synthetic samples are generated with a minimal reconstruction loss of 0.021. A Visual Transformer (ViT) model underwent fine-tuning using this synthetic CPR dataset, achieving high accuracy rates (98%-99%) in classifying the five defect classes. This research offers a promising solution to the data scarcity challenge in rail defect detection, showcasing the potential for robust ICS development in this domain.
Abstract:Multi-access edge computing (MEC) is a promising solution to the computation-intensive, low-latency rendering tasks of the metaverse. However, how to optimally allocate limited communication and computation resources at the edge to a large number of users in the metaverse is quite challenging. In this paper, we propose an adaptive edge resource allocation method based on multi-agent soft actor-critic with graph convolutional networks (SAC-GCN). Specifically, SAC-GCN models the multi-user metaverse environment as a graph where each agent is denoted by a node. Each agent learns the interplay between agents by graph convolutional networks with self-attention mechanism to further determine the resource usage for one user in the metaverse. The effectiveness of SAC-GCN is demonstrated through the analysis of user experience, balance of resource allocation, and resource utilization rate by taking a virtual city park metaverse as an example. Experimental results indicate that SAC-GCN outperforms other resource allocation methods in improving overall user experience, balancing resource allocation, and increasing resource utilization rate by at least 27%, 11%, and 8%, respectively.
Abstract:Resources in high-resource languages have not been efficiently exploited in low-resource languages to solve language-dependent research problems. Spanish and French are considered high resource languages in which an adequate level of data resources for informal online social behavior modeling, is observed. However, a machine translation system to access those data resources and transfer their context and tone to a low-resource language like dialectal Arabic, does not exist. In response, we propose a framework that localizes contents of high-resource languages to a low-resource language/dialects by utilizing AI power. To the best of our knowledge, we are the first work to provide a parallel translation dataset from/to informal Spanish and French to/from informal Arabic dialects. Using this, we aim to enrich the under-resource-status dialectal Arabic and fast-track the research of diverse online social behaviors within and across smart cities in different geo-regions. The experimental results have illustrated the capability of our proposed solution in exploiting the resources between high and low resource languages and dialects. Not only this, but it has also been proven that ignoring dialects within the same language could lead to misleading analysis of online social behavior.
Abstract:Object instances in remote sensing images often distribute with multi-orientations, varying scales, and dense distribution. These issues bring challenges to end-to-end oriented object detectors including multi-scale features alignment and a large number of queries. To address these limitations, we propose an end-to-end oriented detector equipped with an efficient decoder, which incorporates two technologies, Rotated RoI attention (RRoI attention) and Selective Distinct Queries (SDQ). Specifically, RRoI attention effectively focuses on oriented regions of interest through a cross-attention mechanism and aligns multi-scale features. SDQ collects queries from intermediate decoder layers and then filters similar queries to obtain distinct queries. The proposed SDQ can facilitate the optimization of one-to-one label assignment, without introducing redundant initial queries or extra auxiliary branches. Extensive experiments on five datasets demonstrate the effectiveness of our method. Notably, our method achieves state-of-the-art performance on DIOR-R (67.31% mAP), DOTA-v1.5 (67.43% mAP), and DOTA-v2.0 (53.28% mAP) with the ResNet50 backbone.