Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Jeff Schneider

Affordance-based Reinforcement Learning for Urban Driving


Jan 15, 2021
Tanmay Agarwal, Hitesh Arora, Jeff Schneider


  Access Paper or Ask Questions

Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification


Dec 04, 2020
Youngseog Chung, Willie Neiswanger, Ian Char, Jeff Schneider


  Access Paper or Ask Questions

Multi-Agent Active Search using Realistic Depth-Aware Noise Model


Nov 09, 2020
Ramina Ghods, William J. Durkin, Jeff Schneider


  Access Paper or Ask Questions

Behavior Planning at Urban Intersections through Hierarchical Reinforcement Learning


Nov 09, 2020
Zhiqian Qiao, Jeff Schneider, John M. Dolan

* 7 pages, 11 figures 

  Access Paper or Ask Questions

Interactive Visualization for Debugging RL


Aug 18, 2020
Shuby Deshpande, Benjamin Eysenbach, Jeff Schneider

* Builds on preliminary work presented at ICML 2020 (WHI) arXiv:2007.05577. An interactive demo of the system can be at https://tinyurl.com/y5gv5t4m 

  Access Paper or Ask Questions

Vizarel: A System to Help Better Understand RL Agents


Jul 10, 2020
Shuby Deshpande, Jeff Schneider

* Accepted to ICML 2020 Workshop on Human Interpretability in Machine Learning (Spotlight) 

  Access Paper or Ask Questions

Asynchronous Multi Agent Active Search


Jun 25, 2020
Ramina Ghods, Arundhati Banerjee, Jeff Schneider

* Preprint under review 

  Access Paper or Ask Questions

Neural Dynamical Systems: Balancing Structure and Flexibility in Physical Prediction


Jun 23, 2020
Viraj Mehta, Ian Char, Willie Neiswanger, Youngseog Chung, Andrew Oakleigh Nelson, Mark D Boyer, Egemen Kolemen, Jeff Schneider


  Access Paper or Ask Questions

Offline Contextual Bayesian Optimization for Nuclear Fusion


Jan 06, 2020
Youngseog Chung, Ian Char, Willie Neiswanger, Kirthevasan Kandasamy, Andrew Oakleigh Nelson, Mark D Boyer, Egemen Kolemen, Jeff Schneider

* 6 pages, 2 figures, Machine Learning and Physical Sciences workshop 

  Access Paper or Ask Questions

Human Driver Behavior Prediction based on UrbanFlow


Nov 09, 2019
Zhiqian Qiao, Jing Zhao, Zachariah Tyree, Priyantha Mudalige, Jeff Schneider, John M. Dolan

* 7 pages, 12 figures, submitted to 2020 International Conference on Robotics and Automation (ICRA) 

  Access Paper or Ask Questions

Hierarchical Reinforcement Learning Method for Autonomous Vehicle Behavior Planning


Nov 09, 2019
Zhiqian Qiao, Zachariah Tyree, Priyantha Mudalige, Jeff Schneider, John M. Dolan

* 8 pages, 10 figures, Submitted to IEEE Robotics and Automation Letters 

  Access Paper or Ask Questions

ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations


Aug 05, 2019
Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff Schneider, Eric P. Xing


  Access Paper or Ask Questions

Deep Kinematic Models for Physically Realistic Prediction of Vehicle Trajectories


Aug 01, 2019
Henggang Cui, Thi Nguyen, Fang-Chieh Chou, Tsung-Han Lin, Jeff Schneider, David Bradley, Nemanja Djuric


  Access Paper or Ask Questions

Predicting Motion of Vulnerable Road Users using High-Definition Maps and Efficient ConvNets


Jun 20, 2019
Fang-Chieh Chou, Tsung-Han Lin, Henggang Cui, Vladan Radosavljevic, Thi Nguyen, Tzu-Kuo Huang, Matthew Niedoba, Jeff Schneider, Nemanja Djuric

* Shortened version accepted at the workshop on 'Machine Learning for Intelligent Transportation Systems' at Conference on Neural Information Processing Systems (MLITS), Montreal, Canada, 2018 

  Access Paper or Ask Questions

Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly


Mar 15, 2019
Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R. Collins, Jeff Schneider, Barnabas Poczos, Eric P. Xing


  Access Paper or Ask Questions

Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks


Mar 01, 2019
Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang, Jeff Schneider, Nemanja Djuric

* Accepted for publication at IEEE International Conference on Robotics and Automation (ICRA) 2019 

  Access Paper or Ask Questions

ProBO: a Framework for Using Probabilistic Programming in Bayesian Optimization


Jan 31, 2019
Willie Neiswanger, Kirthevasan Kandasamy, Barnabas Poczos, Jeff Schneider, Eric Xing


  Access Paper or Ask Questions

Transformation Autoregressive Networks


Oct 23, 2018
Junier B. Oliva, Avinava Dubey, Manzil Zaheer, Barnabás Póczos, Ruslan Salakhutdinov, Eric P. Xing, Jeff Schneider

* ICML 2018 

  Access Paper or Ask Questions

Short-term Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks


Sep 16, 2018
Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi Nguyen, Fang-Chieh Chou, Tsung-Han Lin, Jeff Schneider


  Access Paper or Ask Questions

Multi-fidelity Gaussian Process Bandit Optimisation


Aug 04, 2018
Kirthevasan Kandasamy, Gautam Dasarathy, Junier B. Oliva, Jeff Schneider, Barnabas Poczos

* Preliminary version appeared at NIPS 2016 

  Access Paper or Ask Questions

Neural Architecture Search with Bayesian Optimisation and Optimal Transport


Jun 10, 2018
Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, Eric Xing


  Access Paper or Ask Questions

Myopic Bayesian Design of Experiments via Posterior Sampling and Probabilistic Programming


May 25, 2018
Kirthevasan Kandasamy, Willie Neiswanger, Reed Zhang, Akshay Krishnamurthy, Jeff Schneider, Barnabas Poczos


  Access Paper or Ask Questions

Bayesian Nonparametric Kernel-Learning


Jan 30, 2018
Junier Oliva, Avinava Dubey, Andrew G. Wilson, Barnabas Poczos, Jeff Schneider, Eric P. Xing


  Access Paper or Ask Questions

Estimating Cosmological Parameters from the Dark Matter Distribution


Nov 06, 2017
Siamak Ravanbakhsh, Junier Oliva, Sebastien Fromenteau, Layne C. Price, Shirley Ho, Jeff Schneider, Barnabas Poczos

* ICML 2016 

  Access Paper or Ask Questions

Scaling Active Search using Linear Similarity Functions


Aug 22, 2017
Sibi Venkatesan, James K. Miller, Jeff Schneider, Artur Dubrawski

* To be published as conference paper at IJCAI 2017, 11 pages, 2 figures 

  Access Paper or Ask Questions

Equivariance Through Parameter-Sharing


Jun 13, 2017
Siamak Ravanbakhsh, Jeff Schneider, Barnabas Poczos

* icml'17 

  Access Paper or Ask Questions

Recurrent Estimation of Distributions


May 30, 2017
Junier B. Oliva, Kumar Avinava Dubey, Barnabas Poczos, Eric Xing, Jeff Schneider


  Access Paper or Ask Questions