Abstract:Automatic log analysis is essential for the efficient Operation and Maintenance (O&M) of software systems, providing critical insights into system behaviors. However, existing approaches mostly treat log analysis as training a model to perform an isolated task, using task-specific log-label pairs. These task-based approaches are inflexible in generalizing to complex scenarios, depend on task-specific training data, and cost significantly when deploying multiple models. In this paper, we propose an instruction-based training approach that transforms log-label pairs from multiple tasks and domains into a unified format of instruction-response pairs. Our trained model, LogLM, can follow complex user instructions and generalize better across different tasks, thereby increasing flexibility and reducing the dependence on task-specific training data. By integrating major log analysis tasks into a single model, our approach also relieves model deployment burden. Experimentally, LogLM outperforms existing approaches across five log analysis capabilities, and exhibits strong generalization abilities on complex instructions and unseen tasks.
Abstract:Haptic feedback to the surgeon during robotic surgery would enable safer and more immersive surgeries but estimating tissue interaction forces at the tips of robotically controlled surgical instruments has proven challenging. Few existing surgical robots can measure interaction forces directly and the additional sensor may limit the life of instruments. We present a hybrid model and learning-based framework for force estimation for the Patient Side Manipulators (PSM) of a da Vinci Research Kit (dVRK). The model-based component identifies the dynamic parameters of the robot and estimates free-space joint torque, while the learning-based component compensates for environmental factors, such as the additional torque caused by trocar interaction between the PSM instrument and the patient's body wall. We evaluate our method in an abdominal phantom and achieve an error in force estimation of under 10% normalized root-mean-squared error. We show that by using a model-based method to perform dynamics identification, we reduce reliance on the training data covering the entire workspace. Although originally developed for the dVRK, the proposed method is a generalizable framework for other compliant surgical robots. The code is available at https://github.com/vu-maple-lab/dvrk_force_estimation.
Abstract:This report outlines our approach for the WMT24 Discourse-Level Literary Translation Task, focusing on the Chinese-English language pair in the Constrained Track. Translating literary texts poses significant challenges due to the nuanced meanings, idiomatic expressions, and intricate narrative structures inherent in such works. To address these challenges, we leveraged the Chinese-Llama2 model, specifically enhanced for this task through a combination of Continual Pre-training (CPT) and Supervised Fine-Tuning (SFT). Our methodology includes a novel Incremental Decoding framework, which ensures that each sentence is translated with consideration of its broader context, maintaining coherence and consistency throughout the text. This approach allows the model to capture long-range dependencies and stylistic elements, producing translations that faithfully preserve the original literary quality. Our experiments demonstrate significant improvements in both sentence-level and document-level BLEU scores, underscoring the effectiveness of our proposed framework in addressing the complexities of document-level literary translation.
Abstract:This article introduces the submission status of the Translation into Low-Resource Languages of Spain task at (WMT 2024) by Huawei Translation Service Center (HW-TSC). We participated in three translation tasks: spanish to aragonese (es-arg), spanish to aranese (es-arn), and spanish to asturian (es-ast). For these three translation tasks, we use training strategies such as multilingual transfer, regularized dropout, forward translation and back translation, labse denoising, transduction ensemble learning and other strategies to neural machine translation (NMT) model based on training deep transformer-big architecture. By using these enhancement strategies, our submission achieved a competitive result in the final evaluation.
Abstract:This paper introduces the submission by Huawei Translation Center (HW-TSC) to the WMT24 Indian Languages Machine Translation (MT) Shared Task. To develop a reliable machine translation system for low-resource Indian languages, we employed two distinct knowledge transfer strategies, taking into account the characteristics of the language scripts and the support available from existing open-source models for Indian languages. For Assamese(as) and Manipuri(mn), we fine-tuned the existing IndicTrans2 open-source model to enable bidirectional translation between English and these languages. For Khasi (kh) and Mizo (mz), We trained a multilingual model as a baseline using bilingual data from these four language pairs, along with an additional about 8kw English-Bengali bilingual data, all of which share certain linguistic features. This was followed by fine-tuning to achieve bidirectional translation between English and Khasi, as well as English and Mizo. Our transfer learning experiments produced impressive results: 23.5 BLEU for en-as, 31.8 BLEU for en-mn, 36.2 BLEU for as-en, and 47.9 BLEU for mn-en on their respective test sets. Similarly, the multilingual model transfer learning experiments yielded impressive outcomes, achieving 19.7 BLEU for en-kh, 32.8 BLEU for en-mz, 16.1 BLEU for kh-en, and 33.9 BLEU for mz-en on their respective test sets. These results not only highlight the effectiveness of transfer learning techniques for low-resource languages but also contribute to advancing machine translation capabilities for low-resource Indian languages.
Abstract:This paper describes the submissions of Huawei Translation Services Center(HW-TSC) to WMT24 chat translation shared task on English$\leftrightarrow$Germany (en-de) bidirection. The experiments involved fine-tuning models using chat data and exploring various strategies, including Minimum Bayesian Risk (MBR) decoding and self-training. The results show significant performance improvements in certain directions, with the MBR self-training method achieving the best results. The Large Language Model also discusses the challenges and potential avenues for further research in the field of chat translation.
Abstract:Open-vocabulary detection (OVD) aims to detect objects beyond a predefined set of categories. As a pioneering model incorporating the YOLO series into OVD, YOLO-World is well-suited for scenarios prioritizing speed and efficiency. However, its performance is hindered by its neck feature fusion mechanism, which causes the quadratic complexity and the limited guided receptive fields. To address these limitations, we present Mamba-YOLO-World, a novel YOLO-based OVD model employing the proposed MambaFusion Path Aggregation Network (MambaFusion-PAN) as its neck architecture. Specifically, we introduce an innovative State Space Model-based feature fusion mechanism consisting of a Parallel-Guided Selective Scan algorithm and a Serial-Guided Selective Scan algorithm with linear complexity and globally guided receptive fields. It leverages multi-modal input sequences and mamba hidden states to guide the selective scanning process. Experiments demonstrate that our model outperforms the original YOLO-World on the COCO and LVIS benchmarks in both zero-shot and fine-tuning settings while maintaining comparable parameters and FLOPs. Additionally, it surpasses existing state-of-the-art OVD methods with fewer parameters and FLOPs.
Abstract:Recent advancements in integrating speech information into large language models (LLMs) have significantly improved automatic speech recognition (ASR) accuracy. However, existing methods often constrained by the capabilities of the speech encoders under varied acoustic conditions, such as accents. To address this, we propose LA-RAG, a novel Retrieval-Augmented Generation (RAG) paradigm for LLM-based ASR. LA-RAG leverages fine-grained token-level speech datastores and a speech-to-speech retrieval mechanism to enhance ASR accuracy via LLM in-context learning (ICL) capabilities. Experiments on Mandarin and various Chinese dialect datasets demonstrate significant improvements in ASR accuracy compared to existing methods, validating the effectiveness of our approach, especially in handling accent variations.
Abstract:There is a great need to accurately predict short-term precipitation, which has socioeconomic effects such as agriculture and disaster prevention. Recently, the forecasting models have employed multi-source data as the multi-modality input, thus improving the prediction accuracy. However, the prevailing methods usually suffer from the desynchronization of multi-source variables, the insufficient capability of capturing spatio-temporal dependency, and unsatisfactory performance in predicting extreme precipitation events. To fix these problems, we propose a short-term precipitation forecasting model based on spatio-temporal alignment attention, with SATA as the temporal alignment module and STAU as the spatio-temporal feature extractor to filter high-pass features from precipitation signals and capture multi-term temporal dependencies. Based on satellite and ERA5 data from the southwestern region of China, our model achieves improvements of 12.61\% in terms of RMSE, in comparison with the state-of-the-art methods.
Abstract:Domain Generalization (DG) has been recently explored to improve the generalizability of point cloud classification (PCC) models toward unseen domains. However, they often suffer from limited receptive fields or quadratic complexity due to the use of convolution neural networks or vision Transformers. In this paper, we present the first work that studies the generalizability of state space models (SSMs) in DG PCC and find that directly applying SSMs into DG PCC will encounter several challenges: the inherent topology of the point cloud tends to be disrupted and leads to noise accumulation during the serialization stage. Besides, the lack of designs in domain-agnostic feature learning and data scanning will introduce unanticipated domain-specific information into the 3D sequence data. To this end, we propose a novel framework, PointDGMamba, that excels in strong generalizability toward unseen domains and has the advantages of global receptive fields and efficient linear complexity. PointDGMamba consists of three innovative components: Masked Sequence Denoising (MSD), Sequence-wise Cross-domain Feature Aggregation (SCFA), and Dual-level Domain Scanning (DDS). In particular, MSD selectively masks out the noised point tokens of the point cloud sequences, SCFA introduces cross-domain but same-class point cloud features to encourage the model to learn how to extract more generalized features. DDS includes intra-domain scanning and cross-domain scanning to facilitate information exchange between features. In addition, we propose a new and more challenging benchmark PointDG-3to1 for multi-domain generalization. Extensive experiments demonstrate the effectiveness and state-of-the-art performance of our presented PointDGMamba.