Abstract:Tracking plant features is crucial for various agricultural tasks like phenotyping, pruning, or harvesting, but the unstructured, cluttered, and deformable nature of plant environments makes it a challenging task. In this context, the recent advancements in foundational models show promise in addressing this challenge. In our work, we propose PlantTrack where we utilize DINOv2 which provides high-dimensional features, and train a keypoint heatmap predictor network to identify the locations of semantic features such as fruits and leaves which are then used as prompts for point tracking across video frames using TAPIR. We show that with as few as 20 synthetic images for training the keypoint predictor, we achieve zero-shot Sim2Real transfer, enabling effective tracking of plant features in real environments.
Abstract:Successful deployment of mobile robots in unstructured domains requires an understanding of the environment and terrain to avoid hazardous areas, getting stuck, and colliding with obstacles. Traversability estimation--which predicts where in the environment a robot can travel--is one prominent approach that tackles this problem. Existing geometric methods may ignore important semantic considerations, while semantic segmentation approaches involve a tedious labeling process. Recent self-supervised methods reduce labeling tedium, but require additional data or models and tend to struggle to explicitly label untraversable areas. To address these limitations, we introduce a weakly-supervised method for relative traversability estimation. Our method involves manually annotating the relative traversability of a small number of point pairs, which significantly reduces labeling effort compared to traditional segmentation-based methods and avoids the limitations of self-supervised methods. We further improve the performance of our method through a novel cross-image labeling strategy and loss function. We demonstrate the viability and performance of our method through deployment on a mobile robot in outdoor environments.
Abstract:We present a vision-based navigation system for under-canopy agricultural robots using semantic keypoints. Autonomous under-canopy navigation is challenging due to the tight spacing between the crop rows ($\sim 0.75$ m), degradation in RTK-GPS accuracy due to multipath error, and noise in LiDAR measurements from the excessive clutter. Our system, CropFollow++, introduces modular and interpretable perception architecture with a learned semantic keypoint representation. We deployed CropFollow++ in multiple under-canopy cover crop planting robots on a large scale (25 km in total) in various field conditions and we discuss the key lessons learned from this.
Abstract:Open-world video instance segmentation is an important video understanding task. Yet most methods either operate in a closed-world setting, require an additional user-input, or use classic region-based proposals to identify never before seen objects. Further, these methods only assign a one-word label to detected objects, and don't generate rich object-centric descriptions. They also often suffer from highly overlapping predictions. To address these issues, we propose Open-World Video Instance Segmentation and Captioning (OW-VISCap), an approach to jointly segment, track, and caption previously seen or unseen objects in a video. For this, we introduce open-world object queries to discover never before seen objects without additional user-input. We generate rich and descriptive object-centric captions for each detected object via a masked attention augmented LLM input. We introduce an inter-query contrastive loss to ensure that the object queries differ from one another. Our generalized approach matches or surpasses state-of-the-art on three tasks: open-world video instance segmentation on the BURST dataset, dense video object captioning on the VidSTG dataset, and closed-world video instance segmentation on the OVIS dataset.
Abstract:A vital aspect of Indian Classical Music (ICM) is Raga, which serves as a melodic framework for compositions and improvisations alike. Raga Recognition is an important music information retrieval task in ICM as it can aid numerous downstream applications ranging from music recommendations to organizing huge music collections. In this work, we propose a deep learning based approach to Raga recognition. Our approach employs efficient pre possessing and learns temporal sequences in music data using Long Short Term Memory based Recurrent Neural Networks (LSTM-RNN). We train and test the network on smaller sequences sampled from the original audio while the final inference is performed on the audio as a whole. Our method achieves an accuracy of 88.1% and 97 % during inference on the Comp Music Carnatic dataset and its 10 Raga subset respectively making it the state-of-the-art for the Raga recognition task. Our approach also enables sequence ranking which aids us in retrieving melodic patterns from a given music data base that are closely related to the presented query sequence.
Abstract:Robotic harvesting has the potential to positively impact agricultural productivity, reduce costs, improve food quality, enhance sustainability, and to address labor shortage. In the rapidly advancing field of agricultural robotics, the necessity of training robots in a virtual environment has become essential. Generating training data to automatize the underlying computer vision tasks such as image segmentation, object detection and classification, also heavily relies on such virtual environments as synthetic data is often required to overcome the shortage and lack of variety of real data sets. However, physics engines commonly employed within the robotics community, such as ODE, Simbody, Bullet, and DART, primarily support motion and collision interaction of rigid bodies. This inherent limitation hinders experimentation and progress in handling non-rigid objects such as plants and crops. In this contribution, we present a plugin for the Gazebo simulation platform based on Cosserat rods to model plant motion. It enables the simulation of plants and their interaction with the environment. We demonstrate that, using our plugin, users can conduct harvesting simulations in Gazebo by simulating a robotic arm picking fruits and achieve results comparable to real-world experiments.
Abstract:Accurate and robust navigation in unstructured environments requires fusing data from multiple sensors. Such fusion ensures that the robot is better aware of its surroundings, including areas of the environment that are not immediately visible, but were visible at a different time. To solve this problem, we propose a method for traversability prediction in challenging outdoor environments using a sequence of RGB and depth images fused with pose estimations. Our method, termed WayFASTER (Waypoints-Free Autonomous System for Traversability with Enhanced Robustness), uses experience data recorded from a receding horizon estimator to train a self-supervised neural network for traversability prediction, eliminating the need for heuristics. Our experiments demonstrate that our method excels at avoiding geometric obstacles, and correctly detects that traversable terrains, such as tall grass, can be navigable. By using a sequence of images, WayFASTER significantly enhances the robot's awareness of its surroundings, enabling it to predict the traversability of terrains that are not immediately visible. This enhanced awareness contributes to better navigation performance in environments where such predictive capabilities are essential.
Abstract:In the recent progress in embodied navigation and sim-to-robot transfer, modular policies have emerged as a de facto framework. However, there is more to compositionality beyond the decomposition of the learning load into modular components. In this work, we investigate a principled way to syntactically combine these components. Particularly, we propose Exploitation-Guided Exploration (XGX) where separate modules for exploration and exploitation come together in a novel and intuitive manner. We configure the exploitation module to take over in the deterministic final steps of navigation i.e. when the goal becomes visible. Crucially, an exploitation module teacher-forces the exploration module and continues driving an overridden policy optimization. XGX, with effective decomposition and novel guidance, improves the state-of-the-art performance on the challenging object navigation task from 70% to 73%. Along with better accuracy, through targeted analysis, we show that XGX is also more efficient at goal-conditioned exploration. Finally, we show sim-to-real transfer to robot hardware and XGX performs over two-fold better than the best baseline from simulation benchmarking. Project page: xgxvisnav.github.io
Abstract:Multivariate time series (MTS) forecasting involves predicting future time series data based on historical observations. Existing research primarily emphasizes the development of complex spatial-temporal models that capture spatial dependencies and temporal correlations among time series variables explicitly. However, recent advances have been impeded by challenges relating to data scarcity and model robustness. To address these issues, we propose Spatial-Temporal Masked Autoencoders (STMAE), an MTS forecasting framework that leverages masked autoencoders to enhance the performance of spatial-temporal baseline models. STMAE consists of two learning stages. In the pretraining stage, an encoder-decoder architecture is employed. The encoder processes the partially visible MTS data produced by a novel dual-masking strategy, including biased random walk-based spatial masking and patch-based temporal masking. Subsequently, the decoders aim to reconstruct the masked counterparts from both spatial and temporal perspectives. The pretraining stage establishes a challenging pretext task, compelling the encoder to learn robust spatial-temporal patterns. In the fine-tuning stage, the pretrained encoder is retained, and the original decoder from existing spatial-temporal models is appended for forecasting. Extensive experiments are conducted on multiple MTS benchmarks. The promising results demonstrate that integrating STMAE into various spatial-temporal models can largely enhance their MTS forecasting capability.
Abstract:Underwater communication signals typically suffer from distortion due to motion-induced Doppler. Especially in shallow water environments, recovering the signal is challenging due to the time-varying Doppler effects distorting each path differently. However, conventional Doppler estimation algorithms typically model uniform Doppler across all paths and often fail to provide robust Doppler tracking in multipath environments. In this paper, we propose a dynamic programming-inspired method, called online segmented recursive least-squares (OSRLS) to sequentially estimate the time-varying non-uniform Doppler across different multipath arrivals. By approximating the non-linear time distortion as a piece-wise-linear Markov model, we formulate the problem in a dynamic programming framework known as segmented least-squares (SLS). In order to circumvent an ill-conditioned formulation, perturbations are added to the Doppler model during the linearization process. The successful operation of the algorithm is demonstrated in a simulation on a synthetic channel with time-varying non-uniform Doppler.