Abstract:Temporal video alignment aims to synchronize the key events like object interactions or action phase transitions in two videos. Such methods could benefit various video editing, processing, and understanding tasks. However, existing approaches operate under the restrictive assumption that a suitable video pair for alignment is given, significantly limiting their broader applicability. To address this, we re-pose temporal alignment as a search problem and introduce the task of Alignable Video Retrieval (AVR). Given a query video, our approach can identify well-alignable videos from a large collection of clips and temporally synchronize them to the query. To achieve this, we make three key contributions: 1) we introduce DRAQ, a video alignability indicator to identify and re-rank the best alignable video from a set of candidates; 2) we propose an effective and generalizable frame-level video feature design to improve the alignment performance of several off-the-shelf feature representations, and 3) we propose a novel benchmark and evaluation protocol for AVR using cycle-consistency metrics. Our experiments on 3 datasets, including large-scale Kinetics700, demonstrate the effectiveness of our approach in identifying alignable video pairs from diverse datasets. Project Page: https://daveishan.github.io/avr-webpage/.
Abstract:In the recent years, the dual-encoder vision-language models (\eg CLIP) have achieved remarkable text-to-image retrieval performance. However, we discover that these models usually results in very different retrievals for a pair of paraphrased queries. Such behavior might render the retrieval system less predictable and lead to user frustration. In this work, we consider the task of paraphrased text-to-image retrieval where a model aims to return similar results given a pair of paraphrased queries. To start with, we collect a dataset of paraphrased image descriptions to facilitate quantitative evaluation for this task. We then hypothesize that the undesired behavior of existing dual-encoder model is due to their text towers which are trained on image-sentence pairs and lack the ability to capture the semantic similarity between paraphrased queries. To improve on this, we investigate multiple strategies for training a dual-encoder model starting from a language model pretrained on a large text corpus. Compared to public dual-encoder models such as CLIP and OpenCLIP, the model trained with our best adaptation strategy achieves a significantly higher ranking similarity for paraphrased queries while maintaining similar zero-shot classification and retrieval accuracy.
Abstract:While there has been significant progress in customizing text-to-image generation models, generating images that combine multiple personalized concepts remains challenging. In this work, we introduce Concept Weaver, a method for composing customized text-to-image diffusion models at inference time. Specifically, the method breaks the process into two steps: creating a template image aligned with the semantics of input prompts, and then personalizing the template using a concept fusion strategy. The fusion strategy incorporates the appearance of the target concepts into the template image while retaining its structural details. The results indicate that our method can generate multiple custom concepts with higher identity fidelity compared to alternative approaches. Furthermore, the method is shown to seamlessly handle more than two concepts and closely follow the semantic meaning of the input prompt without blending appearances across different subjects.
Abstract:Movie trailers are an essential tool for promoting films and attracting audiences. However, the process of creating trailers can be time-consuming and expensive. To streamline this process, we propose an automatic trailer generation framework that generates plausible trailers from a full movie by automating shot selection and composition. Our approach draws inspiration from machine translation techniques and models the movies and trailers as sequences of shots, thus formulating the trailer generation problem as a sequence-to-sequence task. We introduce Trailer Generation Transformer (TGT), a deep-learning framework utilizing an encoder-decoder architecture. TGT movie encoder is tasked with contextualizing each movie shot representation via self-attention, while the autoregressive trailer decoder predicts the feature representation of the next trailer shot, accounting for the relevance of shots' temporal order in trailers. Our TGT significantly outperforms previous methods on a comprehensive suite of metrics.
Abstract:Long-form video content constitutes a significant portion of internet traffic, making automated video summarization an essential research problem. However, existing video summarization datasets are notably limited in their size, constraining the effectiveness of state-of-the-art methods for generalization. Our work aims to overcome this limitation by capitalizing on the abundance of long-form videos with dense speech-to-video alignment and the remarkable capabilities of recent large language models (LLMs) in summarizing long text. We introduce an automated and scalable pipeline for generating a large-scale video summarization dataset using LLMs as Oracle summarizers. By leveraging the generated dataset, we analyze the limitations of existing approaches and propose a new video summarization model that effectively addresses them. To facilitate further research in the field, our work also presents a new benchmark dataset that contains 1200 long videos each with high-quality summaries annotated by professionals. Extensive experiments clearly indicate that our proposed approach sets a new state-of-the-art in video summarization across several benchmarks.
Abstract:Learning computer vision models from (and for) movies has a long-standing history. While great progress has been attained, there is still a need for a pretrained multimodal model that can perform well in the ever-growing set of movie understanding tasks the community has been establishing. In this work, we introduce Long-range Multimodal Pretraining, a strategy, and a model that leverages movie data to train transferable multimodal and cross-modal encoders. Our key idea is to learn from all modalities in a movie by observing and extracting relationships over a long-range. After pretraining, we run ablation studies on the LVU benchmark and validate our modeling choices and the importance of learning from long-range time spans. Our model achieves state-of-the-art on several LVU tasks while being much more data efficient than previous works. Finally, we evaluate our model's transferability by setting a new state-of-the-art in five different benchmarks.
Abstract:Large-scale vision-language models (VLM) have shown impressive results for language-guided search applications. While these models allow category-level queries, they currently struggle with personalized searches for moments in a video where a specific object instance such as ``My dog Biscuit'' appears. We present the following three contributions to address this problem. First, we describe a method to meta-personalize a pre-trained VLM, i.e., learning how to learn to personalize a VLM at test time to search in video. Our method extends the VLM's token vocabulary by learning novel word embeddings specific to each instance. To capture only instance-specific features, we represent each instance embedding as a combination of shared and learned global category features. Second, we propose to learn such personalization without explicit human supervision. Our approach automatically identifies moments of named visual instances in video using transcripts and vision-language similarity in the VLM's embedding space. Finally, we introduce This-Is-My, a personal video instance retrieval benchmark. We evaluate our approach on This-Is-My and DeepFashion2 and show that we obtain a 15% relative improvement over the state of the art on the latter dataset.
Abstract:The recent introduction of the large-scale long-form MAD dataset for language grounding in videos has enabled researchers to investigate the performance of current state-of-the-art methods in the long-form setup, with unexpected findings. In fact, current grounding methods alone fail at tackling this challenging task and setup due to their inability to process long video sequences. In this work, we propose an effective way to circumvent the long-form burden by introducing a new component to grounding pipelines: a Guidance model. The purpose of the Guidance model is to efficiently remove irrelevant video segments from the search space of grounding methods by coarsely aligning the sentence to chunks of the movies and then applying legacy grounding methods where high correlation is found. We term these video segments as non-describable moments. This two-stage approach reveals to be effective in boosting the performance of several different grounding baselines on the challenging MAD dataset, achieving new state-of-the-art performance.
Abstract:Modern machine learning pipelines are limited due to data availability, storage quotas, privacy regulations, and expensive annotation processes. These constraints make it difficult or impossible to maintain a large-scale model trained on growing annotation sets. Continual learning directly approaches this problem, with the ultimate goal of devising methods where a neural network effectively learns relevant patterns for new (unseen) classes without significantly altering its performance on previously learned ones. In this paper, we address the problem of continual learning for video data. We introduce PIVOT, a novel method that leverages the extensive knowledge in pre-trained models from the image domain, thereby reducing the number of trainable parameters and the associated forgetting. Unlike previous methods, ours is the first approach that effectively uses prompting mechanisms for continual learning without any in-domain pre-training. Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
Abstract:Video has become a dominant form of media. However, video editing interfaces have remained largely unchanged over the past two decades. Such interfaces typically consist of a grid-like asset management panel and a linear editing timeline. When working with a large number of video clips, it can be difficult to sort through them all and identify patterns within (e.g. opportunities for smooth transitions and storytelling). In this work, we imagine a new paradigm for video editing by mapping videos into a 2D latent space and building a proof-of-concept interface.