Abstract:Artificial Intelligence (AI) systems are becoming increasingly powerful and autonomous, and may progress to surpass human intelligence levels, namely Artificial Superintelligence (ASI). During the progression from AI to ASI, it may exceed human control, violate human values, and even lead to irreversible catastrophic consequences in extreme cases. This gives rise to a pressing issue that needs to be addressed: superalignment, ensuring that AI systems much smarter than humans, remain aligned with human (compatible) intentions and values. Existing scalable oversight and weak-to-strong generalization methods may prove substantially infeasible and inadequate when facing ASI. We must explore safer and more pluralistic frameworks and approaches for superalignment. In this paper, we redefine superalignment as the human-AI co-alignment towards a sustainable symbiotic society, and highlight a framework that integrates external oversight and intrinsic proactive alignment. External oversight superalignment should be grounded in human-centered ultimate decision, supplemented by interpretable automated evaluation and correction, to achieve continuous alignment with humanity's evolving values. Intrinsic proactive superalignment is rooted in a profound understanding of the self, others, and society, integrating self-awareness, self-reflection, and empathy to spontaneously infer human intentions, distinguishing good from evil and proactively considering human well-being, ultimately attaining human-AI co-alignment through iterative interaction. The integration of externally-driven oversight with intrinsically-driven proactive alignment empowers sustainable symbiotic societies through human-AI co-alignment, paving the way for achieving safe and beneficial AGI and ASI for good, for human, and for a symbiotic ecology.
Abstract:Lateral connection is a fundamental feature of biological neural circuits, facilitating local information processing and adaptive learning. In this work, we integrate lateral connections with a substructure selection network to develop a novel diffusion model based on spiking neural networks (SNNs). Unlike conventional artificial neural networks, SNNs employ an intrinsic spiking inner loop to process sequential binary spikes. We leverage this spiking inner loop alongside a lateral connection mechanism to iteratively refine the substructure selection network, enhancing model adaptability and expressivity. Specifically, we design a lateral connection framework comprising a learnable lateral matrix and a lateral mapping function, both implemented using spiking neurons, to dynamically update lateral connections. Through mathematical modeling, we establish that the proposed lateral update mechanism, under a well-defined local objective, aligns with biologically plausible synaptic plasticity principles. Extensive experiments validate the effectiveness of our approach, analyzing the role of substructure selection and lateral connection during training. Furthermore, quantitative comparisons demonstrate that our model consistently surpasses state-of-the-art SNN-based generative models across multiple benchmark datasets.
Abstract:Humans interpret and perceive the world by integrating sensory information from multiple modalities, such as vision and hearing. Spiking Neural Networks (SNNs), as brain-inspired computational models, exhibit unique advantages in emulating the brain's information processing mechanisms. However, existing SNN models primarily focus on unimodal processing and lack efficient cross-modal information fusion, thereby limiting their effectiveness in real-world multimodal scenarios. To address this challenge, we propose a semantic-alignment cross-modal residual learning (S-CMRL) framework, a Transformer-based multimodal SNN architecture designed for effective audio-visual integration. S-CMRL leverages a spatiotemporal spiking attention mechanism to extract complementary features across modalities, and incorporates a cross-modal residual learning strategy to enhance feature integration. Additionally, a semantic alignment optimization mechanism is introduced to align cross-modal features within a shared semantic space, improving their consistency and complementarity. Extensive experiments on three benchmark datasets CREMA-D, UrbanSound8K-AV, and MNISTDVS-NTIDIGITS demonstrate that S-CMRL significantly outperforms existing multimodal SNN methods, achieving the state-of-the-art performance. The code is publicly available at https://github.com/Brain-Cog-Lab/S-CMRL.
Abstract:Spiking Neural Networks (SNNs) hold promise for energy-efficient, biologically inspired computing. We identify substantial informatio loss during spike transmission, linked to temporal dependencies in traditional Leaky Integrate-and-Fire (LIF) neuron-a key factor potentially limiting SNN performance. Existing SNN architectures also underutilize modern GPUs, constrained by single-bit spike storage and isolated weight-spike operations that restrict computational efficiency. We introduce ${SpikePack}$, a neuron model designed to reduce transmission loss while preserving essential features like membrane potential reset and leaky integration. ${SpikePack}$ achieves constant $\mathcal{O}(1)$ time and space complexity, enabling efficient parallel processing on GPUs and also supporting serial inference on existing SNN hardware accelerators. Compatible with standard Artificial Neural Network (ANN) architectures, ${SpikePack}$ facilitates near-lossless ANN-to-SNN conversion across various networks. Experimental results on tasks such as image classification, detection, and segmentation show ${SpikePack}$ achieves significant gains in accuracy and efficiency for both directly trained and converted SNNs over state-of-the-art models. Tests on FPGA-based platforms further confirm cross-platform flexibility, delivering high performance and enhanced sparsity. By enhancing information flow and rethinking SNN-ANN integration, ${SpikePack}$ advances efficient SNN deployment across diverse hardware platforms.
Abstract:Large Language Models (LLMs) remain vulnerable to jailbreak attacks that bypass their safety mechanisms. Existing attack methods are fixed or specifically tailored for certain models and cannot flexibly adjust attack strength, which is critical for generalization when attacking models of various sizes. We introduce a novel scalable jailbreak attack that preempts the activation of an LLM's safety policies by occupying its computational resources. Our method involves engaging the LLM in a resource-intensive preliminary task - a Character Map lookup and decoding process - before presenting the target instruction. By saturating the model's processing capacity, we prevent the activation of safety protocols when processing the subsequent instruction. Extensive experiments on state-of-the-art LLMs demonstrate that our method achieves a high success rate in bypassing safety measures without requiring gradient access, manual prompt engineering. We verified our approach offers a scalable attack that quantifies attack strength and adapts to different model scales at the optimal strength. We shows safety policies of LLMs might be more susceptible to resource constraints. Our findings reveal a critical vulnerability in current LLM safety designs, highlighting the need for more robust defense strategies that account for resource-intense condition.
Abstract:As large language models (LLMs) become integral to various applications, ensuring both their safety and utility is paramount. Jailbreak attacks, which manipulate LLMs into generating harmful content, pose significant challenges to this balance. Existing defenses, such as prompt engineering and safety fine-tuning, often introduce computational overhead, increase inference latency, and lack runtime flexibility. Moreover, overly restrictive safety measures can degrade model utility by causing refusals of benign queries. In this paper, we introduce Jailbreak Antidote, a method that enables real-time adjustment of LLM safety preferences by manipulating a sparse subset of the model's internal states during inference. By shifting the model's hidden representations along a safety direction with varying strengths, we achieve flexible control over the safety-utility balance without additional token overhead or inference delays. Our analysis reveals that safety-related information in LLMs is sparsely distributed; adjusting approximately 5% of the internal state is as effective as modifying the entire state. Extensive experiments on nine LLMs (ranging from 2 billion to 72 billion parameters), evaluated against ten jailbreak attack methods and compared with six defense strategies, validate the effectiveness and efficiency of our approach. By directly manipulating internal states during reasoning, Jailbreak Antidote offers a lightweight, scalable solution that enhances LLM safety while preserving utility, opening new possibilities for real-time safety mechanisms in widely-deployed AI systems.
Abstract:The hierarchical architecture has become a mainstream design paradigm for Vision Transformers (ViTs), with Patch Merging serving as the pivotal component that transforms a columnar architecture into a hierarchical one. Drawing inspiration from the brain's ability to integrate global and local information for comprehensive visual understanding, we propose a novel technique called Stepwise Patch Merging (SPM), which enhances the subsequent attention mechanism's ability to 'see' better. SPM comprises two critical modules: Multi-Scale Aggregation (MSA) and Guided Local Enhancement (GLE). The MSA module integrates multi-scale features to enrich feature representation, while the GLE module focuses on refining local detail extraction, thus achieving an optimal balance between long-range dependency modeling and local feature enhancement. Extensive experiments conducted on benchmark datasets, including ImageNet-1K, COCO, and ADE20K, demonstrate that SPM significantly improves the performance of various models, particularly in dense prediction tasks such as object detection and semantic segmentation. These results underscore the efficacy of SPM in enhancing model accuracy and robustness across a wide range of computer vision tasks.
Abstract:The audio-visual event localization task requires identifying concurrent visual and auditory events from unconstrained videos within a network model, locating them, and classifying their category. The efficient extraction and integration of audio and visual modal information have always been challenging in this field. In this paper, we introduce CACE-Net, which differs from most existing methods that solely use audio signals to guide visual information. We propose an audio-visual co-guidance attention mechanism that allows for adaptive bi-directional cross-modal attentional guidance between audio and visual information, thus reducing inconsistencies between modalities. Moreover, we have observed that existing methods have difficulty distinguishing between similar background and event and lack the fine-grained features for event classification. Consequently, we employ background-event contrast enhancement to increase the discrimination of fused feature and fine-tuned pre-trained model to extract more refined and discernible features from complex multimodal inputs. Specifically, we have enhanced the model's ability to discern subtle differences between event and background and improved the accuracy of event classification in our model. Experiments on the AVE dataset demonstrate that CACE-Net sets a new benchmark in the audio-visual event localization task, proving the effectiveness of our proposed methods in handling complex multimodal learning and event localization in unconstrained videos. Code is available at https://github.com/Brain-Cog-Lab/CACE-Net.
Abstract:Brain-inspired Spiking Neural Networks (SNNs) have attracted much attention due to their event-based computing and energy-efficient features. However, the spiking all-or-none nature has prevented direct training of SNNs for various applications. The surrogate gradient (SG) algorithm has recently enabled spiking neural networks to shine in neuromorphic hardware. However, introducing surrogate gradients has caused SNNs to lose their original sparsity, thus leading to the potential performance loss. In this paper, we first analyze the current problem of direct training using SGs and then propose Masked Surrogate Gradients (MSGs) to balance the effectiveness of training and the sparseness of the gradient, thereby improving the generalization ability of SNNs. Moreover, we introduce a temporally weighted output (TWO) method to decode the network output, reinforcing the importance of correct timesteps. Extensive experiments on diverse network structures and datasets show that training with MSG and TWO surpasses the SOTA technique.
Abstract:Event data captured by Dynamic Vision Sensors (DVS) offers a unique approach to visual processing that differs from traditional video capture, showcasing its efficiency in dynamic and real-time scenarios. Despite advantages such as high temporal resolution and low energy consumption, the application of event data faces challenges due to limited dataset size and diversity. To address this, we developed EventZoom -- a data augmentation strategy specifically designed for event data. EventZoom employs a progressive temporal strategy that intelligently blends time and space to enhance the diversity and complexity of the data while maintaining its authenticity. This method aims to improve the quality of data for model training and enhance the adaptability and robustness of algorithms in handling complex dynamic scenes. We have experimentally validated EventZoom across various supervised learning frameworks, including supervised, semi-supervised, and unsupervised learning. Our results demonstrate that EventZoom consistently outperforms other data augmentation methods, confirming its effectiveness and applicability as a powerful event-based data augmentation tool in diverse learning settings.