Abstract:In this paper, we investigate integrated sensing and communication (ISAC) in high-mobility systems with the aid of an intelligent reflecting surface (IRS). To exploit the benefits of Delay-Doppler (DD) spread caused by high mobility, orthogonal time frequency space (OTFS)-based frame structure and transmission framework are proposed. {In such a framework,} we first design a low-complexity ratio-based sensing algorithm for estimating the velocity of mobile user. Then, we analyze the performance of sensing and communication in terms of achievable mean square error (MSE) and achievable rate, respectively, and reveal the impact of key parameters. Next, with the derived performance expressions, we jointly optimize the phase shift matrix of IRS and the receive combining vector at the base station (BS) to improve the overall performance of integrated sensing and communication. Finally, extensive simulation results confirm the effectiveness of the proposed algorithms in high-mobility systems.
Abstract:Addressing the challenges of deploying large language models in wireless communication networks, this paper combines low-rank adaptation technology (LoRA) with the splitfed learning framework to propose the federated split learning for large language models (FedsLLM) framework. The method introduced in this paper utilizes LoRA technology to reduce processing loads by dividing the network into client subnetworks and server subnetworks. It leverages a federated server to aggregate and update client models. As the training data are transmitted through a wireless network between clients and both main and federated servers, the training delay is determined by the learning accuracy and the allocation of communication bandwidth. This paper models the minimization of the training delay by integrating computation and communication optimization, simplifying the optimization problem into a convex problem to find the optimal solution. Additionally, it presents a lemma that describes the precise solutions to this problem. Simulation results demonstrate that the proposed optimization algorithm reduces delays by an average of 47.63% compared to unoptimized scenarios.
Abstract:Integrated sensing and communication (ISAC) has emerged as a promising technology to facilitate high-rate communications and super-resolution sensing, particularly operating in the millimeter wave (mmWave) band. However, the vulnerability of mmWave signals to blockages severely impairs ISAC capabilities and coverage. To tackle this, an efficient and low-cost solution is to deploy distributed reconfigurable intelligent surfaces (RISs) to construct virtual links between the base stations (BSs) and users in a controllable fashion. In this paper, we investigate the generalized RIS-assisted mmWave ISAC networks considering the blockage effect, and examine the beneficial impact of RISs on the coverage rate utilizing stochastic geometry. Specifically, taking into account the coupling effect of ISAC dual functions within the same network topology, we derive the conditional coverage probability of ISAC performance for two association cases, based on the proposed beam pattern model and user association policies. Then, the marginal coverage rate is calculated by combining these two cases through the distance-dependent thinning method. Simulation results verify the accuracy of derived theoretical formulations and provide valuable guidelines for the practical network deployment. Specifically, our results indicate the superiority of the RIS deployment with the density of 40 km${}^{-2}$ BSs, and that the joint coverage rate of ISAC performance exhibits potential growth from $67.1\%$ to $92.2\%$ with the deployment of RISs.
Abstract:Inspired by providing reliable communications for high-mobility scenarios, in this letter, we investigate the channel estimation and signal detection in integrated sensing and communication~(ISAC) systems based on the orthogonal delay-Doppler multiplexing~(ODDM) modulation, which consists of a pulse-train that can achieve the orthogonality with respect to the resolution of the delay-Doppler~(DD) plane. To enhance the communication performance in the ODDM-based ISAC systems, we first propose a low-complexity approximation algorithm for channel estimation, which addresses the challenge of the high complexity from high resolution in the ODDM modulation, and achieves performance close to that of the maximum likelihood estimator scheme. Then, we employ the orthogonal approximate message-passing scheme to detect the symbols in the communication process based on the estimated channel information. Finally, simulation results show that the detection performance of ODDM is better than other multi-carrier modulation schemes. Specifically, the ODDM outperforms the orthogonal time frequency space scheme by 2.3 dB when the bit error ratio is $10^{-6}$.
Abstract:Millimeter-wave (mmWave) multiple-input multiple-output (MIMO) communication with the advanced beamforming technologies is a key enabler to meet the growing demands of future mobile communication. However, the dynamic nature of cellular channels in large-scale urban mmWave MIMO communication scenarios brings substantial challenges, particularly in terms of complexity and robustness. To address these issues, we propose a robust gradient-based liquid neural network (GLNN) framework that utilizes ordinary differential equation-based liquid neurons to solve the beamforming problem. Specifically, our proposed GLNN framework takes gradients of the optimization objective function as inputs to extract the high-order channel feature information, and then introduces a residual connection to mitigate the training burden. Furthermore, we use the manifold learning technique to compress the search space of the beamforming problem. These designs enable the GLNN to effectively maintain low complexity while ensuring strong robustness to noisy and highly dynamic channels. Extensive simulation results demonstrate that the GLNN can achieve 4.15% higher spectral efficiency than that of typical iterative algorithms, and reduce the time consumption to only 1.61% that of conventional methods.
Abstract:Holographic multiple-input multiple-output (HMIMO) utilizes a compact antenna array to form a nearly continuous aperture, thereby enhancing higher capacity and more flexible configurations compared with conventional MIMO systems, making it attractive in current scientific research. Key questions naturally arise regarding the potential of HMIMO to surpass Shannon's theoretical limits and how far its capabilities can be extended. However, the traditional Shannon information theory falls short in addressing these inquiries because it only focuses on the information itself while neglecting the underlying carrier, electromagnetic (EM) waves, and environmental interactions. To fill up the gap between the theoretical analysis and the practical application for HMIMO systems, we introduce electromagnetic information theory (EIT) in this paper. This paper begins by laying the foundation for HMIMO-oriented EIT, encompassing EM wave equations and communication regions. In the context of HMIMO systems, the resultant physical limitations are presented, involving Chu's limit, Harrington's limit, Hannan's limit, and the evaluation of coupling effects. Field sampling and HMIMO-assisted oversampling are also discussed to guide the optimal HMIMO design within the EIT framework. To comprehensively depict the EM-compliant propagation process, we present the approximate and exact channel modeling approaches in near-/far-field zones. Furthermore, we discuss both traditional Shannon's information theory, employing the probabilistic method, and Kolmogorov information theory, utilizing the functional analysis, for HMIMO-oriented EIT systems.
Abstract:The beamforming technology with large holographic antenna arrays is one of the key enablers for the next generation of wireless systems, which can significantly improve the spectral efficiency. However, the deployment of large antenna arrays implies high algorithm complexity and resource overhead at both receiver and transmitter ends. To address this issue, advanced technologies such as artificial intelligence have been developed to reduce beamforming overhead. Intuitively, if we can implement the near-optimal beamforming only using a tiny subset of the all channel information, the overhead for channel estimation and beamforming would be reduced significantly compared with the traditional beamforming methods that usually need full channel information and the inversion of large dimensional matrix. In light of this idea, we propose a novel scheme that utilizes Wasserstein generative adversarial network with gradient penalty to infer the full beamforming matrices based on very little of channel information. Simulation results confirm that it can accomplish comparable performance with the weighted minimum mean-square error algorithm, while reducing the overhead by over 50%.
Abstract:Millimeter-wave (mmWave) technology is increasingly recognized as a pivotal technology of the sixth-generation communication networks due to the large amounts of available spectrum at high frequencies. However, the huge overhead associated with beam training imposes a significant challenge in mmWave communications, particularly in urban environments with high background noise. To reduce this high overhead, we propose a novel solution for robust continuous-time beam tracking with liquid neural network, which dynamically adjust the narrow mmWave beams to ensure real-time beam alignment with mobile users. Through extensive simulations, we validate the effectiveness of our proposed method and demonstrate its superiority over existing state-of-the-art deep-learning-based approaches. Specifically, our scheme achieves at most 46.9% higher normalized spectral efficiency than the baselines when the user is moving at 5 m/s, demonstrating the potential of liquid neural networks to enhance mmWave mobile communication performance.
Abstract:In this paper, we investigate the potential of reconfigurable intelligent surfaces (RISs) in facilitating passive/device-free three-dimensional (3D) drone localization within existing cellular infrastructure operating at millimeter-wave (mmWave) frequencies and employing multiple antennas at the transceivers. The developed localization system operates in the bi-static mode without requiring direct communication between the drone and the base station. We analyze the theoretical performance limits via Fisher information analysis and Cram\'er Rao lower bounds (CRLBs). Furthermore, we develop a low-complexity yet effective drone localization algorithm based on coordinate gradient descent and examine the impact of factors such as radar cross section (RCS) of the drone and training overhead on system performance. It is demonstrated that integrating RIS yields significant benefits over its RIS-free counterpart, as evidenced by both theoretical analyses and numerical simulations.
Abstract:In this paper, we investigate the problem of resource allocation for fluid antenna relay (FAR) system with antenna location optimization. In the considered model, each user transmits information to a base station (BS) with help of FAR. The antenna location of the FAR is flexible and can be adapted to dynamic location distribution of the users. We formulate a sum rate maximization problem through jointly optimizing the antenna location and bandwidth allocation with meeting the minimum rate requirements, total bandwidth budget, and feasible antenna region constraints. To solve this problem, we obtain the optimal bandwidth in closed form. Based on the optimal bandwidth, the original problem is reduced to the antenna location optimization problem and an alternating algorithm is proposed. Simulation results verify the effectiveness of the proposed algorithm and the sum rate can be increased by up to 125% compared to the conventional schemes.