Princeton University
Abstract:When analysing screening mammograms, radiologists can naturally process information across two ipsilateral views of each breast, namely the cranio-caudal (CC) and mediolateral-oblique (MLO) views. These multiple related images provide complementary diagnostic information and can improve the radiologist's classification accuracy. Unfortunately, most existing deep learning systems, trained with globally-labelled images, lack the ability to jointly analyse and integrate global and local information from these multiple views. By ignoring the potentially valuable information present in multiple images of a screening episode, one limits the potential accuracy of these systems. Here, we propose a new multi-view global-local analysis method that mimics the radiologist's reading procedure, based on a global consistency learning and local co-occurrence learning of ipsilateral views in mammograms. Extensive experiments show that our model outperforms competing methods, in terms of classification accuracy and generalisation, on a large-scale private dataset and two publicly available datasets, where models are exclusively trained and tested with global labels.
Abstract:In recommendation systems, items are likely to be exposed to various users and we would like to learn about the familiarity of a new user with an existing item. This can be formulated as an anomaly detection (AD) problem distinguishing between "common users" (nominal) and "fresh users" (anomalous). Considering the sheer volume of items and the sparsity of user-item paired data, independently applying conventional single-task detection methods on each item quickly becomes difficult, while correlations between items are ignored. To address this multi-task anomaly detection problem, we propose collaborative anomaly detection (CAD) to jointly learn all tasks with an embedding encoding correlations among tasks. We explore CAD with conditional density estimation and conditional likelihood ratio estimation. We found that: $i$) estimating a likelihood ratio enjoys more efficient learning and yields better results than density estimation. $ii$) It is beneficial to select a small number of tasks in advance to learn a task embedding model, and then use it to warm-start all task embeddings. Consequently, these embeddings can capture correlations between tasks and generalize to new correlated tasks.
Abstract:Federated learning (FL) has gained significant attention recently as a privacy-enhancing tool to jointly train a machine learning model by multiple participants. The prior work on FL has mostly studied how to protect label privacy during model training. However, model evaluation in FL might also lead to potential leakage of private label information. In this work, we propose an evaluation algorithm that can accurately compute the widely used AUC (area under the curve) metric when using the label differential privacy (DP) in FL. Through extensive experiments, we show our algorithms can compute accurate AUCs compared to the ground truth.
Abstract:Image restoration schemes based on the pre-trained deep models have received great attention due to their unique flexibility for solving various inverse problems. In particular, the Plug-and-Play (PnP) framework is a popular and powerful tool that can integrate an off-the-shelf deep denoiser for different image restoration tasks with known observation models. However, obtaining the observation model that exactly matches the actual one can be challenging in practice. Thus, the PnP schemes with conventional deep denoisers may fail to generate satisfying results in some real-world image restoration tasks. We argue that the robustness of the PnP framework is largely limited by using the off-the-shelf deep denoisers that are trained by deterministic optimization. To this end, we propose a novel deep reinforcement learning (DRL) based PnP framework, dubbed RePNP, by leveraging a light-weight DRL-based denoiser for robust image restoration tasks. Experimental results demonstrate that the proposed RePNP is robust to the observation model used in the PnP scheme deviating from the actual one. Thus, RePNP can generate more reliable restoration results for image deblurring and super resolution tasks. Compared with several state-of-the-art deep image restoration baselines, RePNP achieves better results subjective to model deviation with fewer model parameters.
Abstract:Differentially Private (DP) data release is a promising technique to disseminate data without compromising the privacy of data subjects. However the majority of prior work has focused on scenarios where a single party owns all the data. In this paper we focus on the multi-party setting, where different stakeholders own disjoint sets of attributes belonging to the same group of data subjects. Within the context of linear regression that allow all parties to train models on the complete data without the ability to infer private attributes or identities of individuals, we start with directly applying Gaussian mechanism and show it has the small eigenvalue problem. We further propose our novel method and prove it asymptotically converges to the optimal (non-private) solutions with increasing dataset size. We substantiate the theoretical results through experiments on both artificial and real-world datasets.
Abstract:Federated learning has gained great attention recently as a privacy-enhancing tool to jointly train a machine learning model by multiple parties. As a sub-category, vertical federated learning (vFL) focuses on the scenario where features and labels are split into different parties. The prior work on vFL has mostly studied how to protect label privacy during model training. However, model evaluation in vFL might also lead to potential leakage of private label information. One mitigation strategy is to apply label differential privacy (DP) but it gives bad estimations of the true (non-private) metrics. In this work, we propose two evaluation algorithms that can more accurately compute the widely used AUC (area under curve) metric when using label DP in vFL. Through extensive experiments, we show our algorithms can achieve more accurate AUCs compared to the baselines.
Abstract:Recently, random feature attentions (RFAs) are proposed to approximate the softmax attention in linear time and space complexity by linearizing the exponential kernel. In this paper, we first propose a novel perspective to understand the bias in such approximation by recasting RFAs as self-normalized importance samplers. This perspective further sheds light on an \emph{unbiased} estimator for the whole softmax attention, called randomized attention (RA). RA constructs positive random features via query-specific distributions and enjoys greatly improved approximation fidelity, albeit exhibiting quadratic complexity. By combining the expressiveness in RA and the efficiency in RFA, we develop a novel linear complexity self-attention mechanism called linear randomized attention (LARA). Extensive experiments across various domains demonstrate that RA and LARA significantly improve the performance of RFAs by a substantial margin.
Abstract:3D medical image segmentation methods have been successful, but their dependence on large amounts of voxel-level annotated data is a disadvantage that needs to be addressed given the high cost to obtain such annotation. Semi-supervised learning (SSL) solve this issue by training models with a large unlabelled and a small labelled dataset. The most successful SSL approaches are based on consistency learning that minimises the distance between model responses obtained from perturbed views of the unlabelled data. These perturbations usually keep the spatial input context between views fairly consistent, which may cause the model to learn segmentation patterns from the spatial input contexts instead of the segmented objects. In this paper, we introduce the Translation Consistent Co-training (TraCoCo) which is a consistency learning SSL method that perturbs the input data views by varying their spatial input context, allowing the model to learn segmentation patterns from visual objects. Furthermore, we propose the replacement of the commonly used mean squared error (MSE) semi-supervised loss by a new Cross-model confident Binary Cross entropy (CBC) loss, which improves training convergence and keeps the robustness to co-training pseudo-labelling mistakes. We also extend CutMix augmentation to 3D SSL to further improve generalisation. Our TraCoCo shows state-of-the-art results for the Left Atrium (LA) and Brain Tumor Segmentation (BRaTS19) datasets with different backbones. Our code is available at https://github.com/yyliu01/TraCoCo.
Abstract:Current polyp detection methods from colonoscopy videos use exclusively normal (i.e., healthy) training images, which i) ignore the importance of temporal information in consecutive video frames, and ii) lack knowledge about the polyps. Consequently, they often have high detection errors, especially on challenging polyp cases (e.g., small, flat, or partially visible polyps). In this work, we formulate polyp detection as a weakly-supervised anomaly detection task that uses video-level labelled training data to detect frame-level polyps. In particular, we propose a novel convolutional transformer-based multiple instance learning method designed to identify abnormal frames (i.e., frames with polyps) from anomalous videos (i.e., videos containing at least one frame with polyp). In our method, local and global temporal dependencies are seamlessly captured while we simultaneously optimise video and snippet-level anomaly scores. A contrastive snippet mining method is also proposed to enable an effective modelling of the challenging polyp cases. The resulting method achieves a detection accuracy that is substantially better than current state-of-the-art approaches on a new large-scale colonoscopy video dataset introduced in this work.
Abstract:Unsupervised anomaly detection (UAD) aims to find anomalous images by optimising a detector using a training set that contains only normal images. UAD approaches can be based on reconstruction methods, self-supervised approaches, and Imagenet pre-trained models. Reconstruction methods, which detect anomalies from image reconstruction errors, are advantageous because they do not rely on the design of problem-specific pretext tasks needed by self-supervised approaches, and on the unreliable translation of models pre-trained from non-medical datasets. However, reconstruction methods may fail because they can have low reconstruction errors even for anomalous images. In this paper, we introduce a new reconstruction-based UAD approach that addresses this low-reconstruction error issue for anomalous images. Our UAD approach, the memory-augmented multi-level cross-attentional masked autoencoder (MemMC-MAE), is a transformer-based approach, consisting of a novel memory-augmented self-attention operator for the encoder and a new multi-level cross-attention operator for the decoder. MemMC-MAE masks large parts of the input image during its reconstruction, reducing the risk that it will produce low reconstruction errors because anomalies are likely to be masked and cannot be reconstructed. However, when the anomaly is not masked, then the normal patterns stored in the encoder's memory combined with the decoder's multi-level cross-attention will constrain the accurate reconstruction of the anomaly. We show that our method achieves SOTA anomaly detection and localisation on colonoscopy and Covid-19 Chest X-ray datasets.