Abstract:We introduce $Urania$, a novel framework for generating insights about LLM chatbot interactions with rigorous differential privacy (DP) guarantees. The framework employs a private clustering mechanism and innovative keyword extraction methods, including frequency-based, TF-IDF-based, and LLM-guided approaches. By leveraging DP tools such as clustering, partition selection, and histogram-based summarization, $Urania$ provides end-to-end privacy protection. Our evaluation assesses lexical and semantic content preservation, pair similarity, and LLM-based metrics, benchmarking against a non-private Clio-inspired pipeline (Tamkin et al., 2024). Moreover, we develop a simple empirical privacy evaluation that demonstrates the enhanced robustness of our DP pipeline. The results show the framework's ability to extract meaningful conversational insights while maintaining stringent user privacy, effectively balancing data utility with privacy preservation.
Abstract:We give a simple, computationally efficient, and node-differentially-private algorithm for estimating the parameter of an Erdos-Renyi graph---that is, estimating p in a G(n,p)---with near-optimal accuracy. Our algorithm nearly matches the information-theoretically optimal exponential-time algorithm for the same problem due to Borgs et al. (FOCS 2018). More generally, we give an optimal, computationally efficient, private algorithm for estimating the edge-density of any graph whose degree distribution is concentrated on a small interval.