Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Nathan Huetsch, Javier Mariño Villadamigo, Alexander Shmakov, Sascha Diefenbacher, Vinicius Mikuni, Theo Heimel, Michael Fenton, Kevin Greif, Benjamin Nachman, Daniel Whiteson, Anja Butter, Tilman Plehn

Recent innovations from machine learning allow for data unfolding, without binning and including correlations across many dimensions. We describe a set of known, upgraded, and new methods for ML-based unfolding. The performance of these approaches are evaluated on the same two datasets. We find that all techniques are capable of accurately reproducing the particle-level spectra across complex observables. Given that these approaches are conceptually diverse, they offer an exciting toolkit for a new class of measurements that can probe the Standard Model with an unprecedented level of detail and may enable sensitivity to new phenomena.

Via

Haoxing Du, Claudius Krause, Vinicius Mikuni, Benjamin Nachman, Ian Pang, David Shih

There have been many applications of deep neural networks to detector calibrations and a growing number of studies that propose deep generative models as automated fast detector simulators. We show that these two tasks can be unified by using maximum likelihood estimation (MLE) from conditional generative models for energy regression. Unlike direct regression techniques, the MLE approach is prior-independent and non-Gaussian resolutions can be determined from the shape of the likelihood near the maximum. Using an ATLAS-like calorimeter simulation, we demonstrate this concept in the context of calorimeter energy calibration.

Via

Owen Long, Benjamin Nachman

Many analyses in particle and nuclear physics use simulations to infer fundamental, effective, or phenomenological parameters of the underlying physics models. When the inference is performed with unfolded cross sections, the observables are designed using physics intuition and heuristics. We propose to design optimal observables with machine learning. Unfolded, differential cross sections in a neural network output contain the most information about parameters of interest and can be well-measured by construction. We demonstrate this idea using two physics models for inclusive measurements in deep inelastic scattering.

Via

Fernando Torales Acosta, Bishnu Karki, Piyush Karande, Aaron Angerami, Miguel Arratia, Kenneth Barish, Ryan Milton, Sebastián Morán, Benjamin Nachman, Anshuman Sinha

One of the key design choices of any sampling calorimeter is how fine to make the longitudinal and transverse segmentation. To inform this choice, we study the impact of calorimeter segmentation on energy reconstruction. To ensure that the trends are due entirely to hardware and not to a sub-optimal use of segmentation, we deploy deep neural networks to perform the reconstruction. These networks make use of all available information by representing the calorimeter as a point cloud. To demonstrate our approach, we simulate a detector similar to the forward calorimeter system intended for use in the ePIC detector, which will operate at the upcoming Electron Ion Collider. We find that for the energy estimation of isolated charged pion showers, relatively fine longitudinal segmentation is key to achieving an energy resolution that is better than 10% across the full phase space. These results provide a valuable benchmark for ongoing EIC detector optimizations and may also inform future studies involving high-granularity calorimeters in other experiments at various facilities.

Via

Tobias Golling, Samuel Klein, Radha Mastandrea, Benjamin Nachman, John Andrew Raine

Many components of data analysis in high energy physics and beyond require morphing one dataset into another. This is commonly solved via reweighting, but there are many advantages of preserving weights and shifting the data points instead. Normalizing flows are machine learning models with impressive precision on a variety of particle physics tasks. Naively, normalizing flows cannot be used for morphing because they require knowledge of the probability density of the starting dataset. In most cases in particle physics, we can generate more examples, but we do not know densities explicitly. We propose a protocol called flows for flows for training normalizing flows to morph one dataset into another even if the underlying probability density of neither dataset is known explicitly. This enables a morphing strategy trained with maximum likelihood estimation, a setup that has been shown to be highly effective in related tasks. We study variations on this protocol to explore how far the data points are moved to statistically match the two datasets. Furthermore, we show how to condition the learned flows on particular features in order to create a morphing function for every value of the conditioning feature. For illustration, we demonstrate flows for flows for toy examples as well as a collider physics example involving dijet events

Via

Sascha Diefenbacher, Guan-Horng Liu, Vinicius Mikuni, Benjamin Nachman, Weili Nie

Machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area: one based on discriminative models and one based on generative models. The main advantage of discriminative models is that they learn a small correction to a starting simulation while generative models scale better to regions of phase space with little data. We propose to use Schroedinger Bridges and diffusion models to create SBUnfold, an unfolding approach that combines the strengths of both discriminative and generative models. The key feature of SBUnfold is that its generative model maps one set of events into another without having to go through a known probability density as is the case for normalizing flows and standard diffusion models. We show that SBUnfold achieves excellent performance compared to state of the art methods on a synthetic Z+jets dataset.

Via

Fernando Torales Acosta, Vinicius Mikuni, Benjamin Nachman, Miguel Arratia, Bishnu Karki, Ryan Milton, Piyush Karande, Aaron Angerami

Score based generative models are a new class of generative models that have been shown to accurately generate high dimensional calorimeter datasets. Recent advances in generative models have used images with 3D voxels to represent and model complex calorimeter showers. Point clouds, however, are likely a more natural representation of calorimeter showers, particularly in calorimeters with high granularity. Point clouds preserve all of the information of the original simulation, more naturally deal with sparse datasets, and can be implemented with more compact models and data files. In this work, two state-of-the-art score based models are trained on the same set of calorimeter simulation and directly compared.

Via

Vinicius Mikuni, Benjamin Nachman

Methods for anomaly detection of new physics processes are often limited to low-dimensional spaces due to the difficulty of learning high-dimensional probability densities. Particularly at the constituent level, incorporating desirable properties such as permutation invariance and variable-length inputs becomes difficult within popular density estimation methods. In this work, we introduce a permutation-invariant density estimator for particle physics data based on diffusion models, specifically designed to handle variable-length inputs. We demonstrate the efficacy of our methodology by utilizing the learned density as a permutation-invariant anomaly detection score, effectively identifying jets with low likelihood under the background-only hypothesis. To validate our density estimation method, we investigate the ratio of learned densities and compare to those obtained by a supervised classification algorithm.

Via

Shahzar Rizvi, Mariel Pettee, Benjamin Nachman

The likelihood ratio is a crucial quantity for statistical inference in science that enables hypothesis testing, construction of confidence intervals, reweighting of distributions, and more. Many modern scientific applications, however, make use of data- or simulation-driven models for which computing the likelihood ratio can be very difficult or even impossible. By applying the so-called ``likelihood ratio trick,'' approximations of the likelihood ratio may be computed using clever parametrizations of neural network-based classifiers. A number of different neural network setups can be defined to satisfy this procedure, each with varying performance in approximating the likelihood ratio when using finite training data. We present a series of empirical studies detailing the performance of several common loss functionals and parametrizations of the classifier output in approximating the likelihood ratio of two univariate and multivariate Gaussian distributions as well as simulated high-energy particle physics datasets.

Via

Benjamin Nachman, Ramon Winterhalder

Simulations play a key role for inference in collider physics. We explore various approaches for enhancing the precision of simulations using machine learning, including interventions at the end of the simulation chain (reweighting), at the beginning of the simulation chain (pre-processing), and connections between the end and beginning (latent space refinement). To clearly illustrate our approaches, we use W+jets matrix element surrogate simulations based on normalizing flows as a prototypical example. First, weights in the data space are derived using machine learning classifiers. Then, we pull back the data-space weights to the latent space to produce unweighted examples and employ the Latent Space Refinement (LASER) protocol using Hamiltonian Monte Carlo. An alternative approach is an augmented normalizing flow, which allows for different dimensions in the latent and target spaces. These methods are studied for various pre-processing strategies, including a new and general method for massive particles at hadron colliders that is a tweak on the widely-used RAMBO-on-diet mapping. We find that modified simulations can achieve sub-percent precision across a wide range of phase space.

Via