Alert button
Picture for Arthur Guez

Arthur Guez

Alert button

Beyond Tabula-Rasa: a Modular Reinforcement Learning Approach for Physically Embedded 3D Sokoban

Add code
Bookmark button
Alert button
Oct 03, 2020
Peter Karkus, Mehdi Mirza, Arthur Guez, Andrew Jaegle, Timothy Lillicrap, Lars Buesing, Nicolas Heess, Theophane Weber

Figure 1 for Beyond Tabula-Rasa: a Modular Reinforcement Learning Approach for Physically Embedded 3D Sokoban
Figure 2 for Beyond Tabula-Rasa: a Modular Reinforcement Learning Approach for Physically Embedded 3D Sokoban
Figure 3 for Beyond Tabula-Rasa: a Modular Reinforcement Learning Approach for Physically Embedded 3D Sokoban
Figure 4 for Beyond Tabula-Rasa: a Modular Reinforcement Learning Approach for Physically Embedded 3D Sokoban
Viaarxiv icon

Physically Embedded Planning Problems: New Challenges for Reinforcement Learning

Add code
Bookmark button
Alert button
Sep 11, 2020
Mehdi Mirza, Andrew Jaegle, Jonathan J. Hunt, Arthur Guez, Saran Tunyasuvunakool, Alistair Muldal, Théophane Weber, Peter Karkus, Sébastien Racanière, Lars Buesing, Timothy Lillicrap, Nicolas Heess

Figure 1 for Physically Embedded Planning Problems: New Challenges for Reinforcement Learning
Figure 2 for Physically Embedded Planning Problems: New Challenges for Reinforcement Learning
Figure 3 for Physically Embedded Planning Problems: New Challenges for Reinforcement Learning
Figure 4 for Physically Embedded Planning Problems: New Challenges for Reinforcement Learning
Viaarxiv icon

Value-driven Hindsight Modelling

Add code
Bookmark button
Alert button
Feb 19, 2020
Arthur Guez, Fabio Viola, Théophane Weber, Lars Buesing, Steven Kapturowski, Doina Precup, David Silver, Nicolas Heess

Figure 1 for Value-driven Hindsight Modelling
Figure 2 for Value-driven Hindsight Modelling
Figure 3 for Value-driven Hindsight Modelling
Figure 4 for Value-driven Hindsight Modelling
Viaarxiv icon

Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model

Add code
Bookmark button
Alert button
Nov 19, 2019
Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, David Silver

Figure 1 for Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
Figure 2 for Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
Figure 3 for Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
Figure 4 for Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
Viaarxiv icon

Augmenting learning using symmetry in a biologically-inspired domain

Add code
Bookmark button
Alert button
Oct 01, 2019
Shruti Mishra, Abbas Abdolmaleki, Arthur Guez, Piotr Trochim, Doina Precup

Figure 1 for Augmenting learning using symmetry in a biologically-inspired domain
Figure 2 for Augmenting learning using symmetry in a biologically-inspired domain
Viaarxiv icon

An investigation of model-free planning

Add code
Bookmark button
Alert button
Jan 11, 2019
Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Théophane Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver, Timothy Lillicrap

Figure 1 for An investigation of model-free planning
Figure 2 for An investigation of model-free planning
Figure 3 for An investigation of model-free planning
Figure 4 for An investigation of model-free planning
Viaarxiv icon

Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search

Add code
Bookmark button
Alert button
Nov 15, 2018
Lars Buesing, Theophane Weber, Yori Zwols, Sebastien Racaniere, Arthur Guez, Jean-Baptiste Lespiau, Nicolas Heess

Figure 1 for Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search
Figure 2 for Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search
Figure 3 for Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search
Figure 4 for Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search
Viaarxiv icon

Learning to Search with MCTSnets

Add code
Bookmark button
Alert button
Jul 17, 2018
Arthur Guez, Théophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan Wierstra, Rémi Munos, David Silver

Figure 1 for Learning to Search with MCTSnets
Figure 2 for Learning to Search with MCTSnets
Figure 3 for Learning to Search with MCTSnets
Figure 4 for Learning to Search with MCTSnets
Viaarxiv icon

Imagination-Augmented Agents for Deep Reinforcement Learning

Add code
Bookmark button
Alert button
Feb 14, 2018
Théophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, Daan Wierstra

Figure 1 for Imagination-Augmented Agents for Deep Reinforcement Learning
Figure 2 for Imagination-Augmented Agents for Deep Reinforcement Learning
Figure 3 for Imagination-Augmented Agents for Deep Reinforcement Learning
Figure 4 for Imagination-Augmented Agents for Deep Reinforcement Learning
Viaarxiv icon

Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

Add code
Bookmark button
Alert button
Dec 05, 2017
David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis Hassabis

Figure 1 for Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
Figure 2 for Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
Figure 3 for Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
Figure 4 for Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
Viaarxiv icon