Alert button
Picture for Andrey Ignatov

Andrey Ignatov

Alert button

MicroISP: Processing 32MP Photos on Mobile Devices with Deep Learning

Nov 08, 2022
Andrey Ignatov, Anastasia Sycheva, Radu Timofte, Yu Tseng, Yu-Syuan Xu, Po-Hsiang Yu, Cheng-Ming Chiang, Hsien-Kai Kuo, Min-Hung Chen, Chia-Ming Cheng, Luc Van Gool

Figure 1 for MicroISP: Processing 32MP Photos on Mobile Devices with Deep Learning
Figure 2 for MicroISP: Processing 32MP Photos on Mobile Devices with Deep Learning
Figure 3 for MicroISP: Processing 32MP Photos on Mobile Devices with Deep Learning
Figure 4 for MicroISP: Processing 32MP Photos on Mobile Devices with Deep Learning

While neural networks-based photo processing solutions can provide a better image quality compared to the traditional ISP systems, their application to mobile devices is still very limited due to their very high computational complexity. In this paper, we present a novel MicroISP model designed specifically for edge devices, taking into account their computational and memory limitations. The proposed solution is capable of processing up to 32MP photos on recent smartphones using the standard mobile ML libraries and requiring less than 1 second to perform the inference, while for FullHD images it achieves real-time performance. The architecture of the model is flexible, allowing to adjust its complexity to devices of different computational power. To evaluate the performance of the model, we collected a novel Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The experiments demonstrated that, despite its compact size, the MicroISP model is able to provide comparable or better visual results than the traditional mobile ISP systems, while outperforming the previously proposed efficient deep learning based solutions. Finally, this model is also compatible with the latest mobile AI accelerators, achieving good runtime and low power consumption on smartphone NPUs and APUs. The code, dataset and pre-trained models are available on the project website: https://people.ee.ethz.ch/~ihnatova/microisp.html

* arXiv admin note: text overlap with arXiv:2211.06263 
Viaarxiv icon

PyNet-V2 Mobile: Efficient On-Device Photo Processing With Neural Networks

Nov 08, 2022
Andrey Ignatov, Grigory Malivenko, Radu Timofte, Yu Tseng, Yu-Syuan Xu, Po-Hsiang Yu, Cheng-Ming Chiang, Hsien-Kai Kuo, Min-Hung Chen, Chia-Ming Cheng, Luc Van Gool

Figure 1 for PyNet-V2 Mobile: Efficient On-Device Photo Processing With Neural Networks
Figure 2 for PyNet-V2 Mobile: Efficient On-Device Photo Processing With Neural Networks
Figure 3 for PyNet-V2 Mobile: Efficient On-Device Photo Processing With Neural Networks
Figure 4 for PyNet-V2 Mobile: Efficient On-Device Photo Processing With Neural Networks

The increased importance of mobile photography created a need for fast and performant RAW image processing pipelines capable of producing good visual results in spite of the mobile camera sensor limitations. While deep learning-based approaches can efficiently solve this problem, their computational requirements usually remain too large for high-resolution on-device image processing. To address this limitation, we propose a novel PyNET-V2 Mobile CNN architecture designed specifically for edge devices, being able to process RAW 12MP photos directly on mobile phones under 1.5 second and producing high perceptual photo quality. To train and to evaluate the performance of the proposed solution, we use the real-world Fujifilm UltraISP dataset consisting on thousands of RAW-RGB image pairs captured with a professional medium-format 102MP Fujifilm camera and a popular Sony mobile camera sensor. The results demonstrate that the PyNET-V2 Mobile model can substantially surpass the quality of tradition ISP pipelines, while outperforming the previously introduced neural network-based solutions designed for fast image processing. Furthermore, we show that the proposed architecture is also compatible with the latest mobile AI accelerators such as NPUs or APUs that can be used to further reduce the latency of the model to as little as 0.5 second. The dataset, code and pre-trained models used in this paper are available on the project website: https://github.com/gmalivenko/PyNET-v2

Viaarxiv icon

Realistic Bokeh Effect Rendering on Mobile GPUs, Mobile AI & AIM 2022 challenge: Report

Nov 07, 2022
Andrey Ignatov, Radu Timofte, Jin Zhang, Feng Zhang, Gaocheng Yu, Zhe Ma, Hongbin Wang, Minsu Kwon, Haotian Qian, Wentao Tong, Pan Mu, Ziping Wang, Guangjing Yan, Brian Lee, Lei Fei, Huaijin Chen, Hyebin Cho, Byeongjun Kwon, Munchurl Kim, Mingyang Qian, Huixin Ma, Yanan Li, Xiaotao Wang, Lei Lei

Figure 1 for Realistic Bokeh Effect Rendering on Mobile GPUs, Mobile AI & AIM 2022 challenge: Report
Figure 2 for Realistic Bokeh Effect Rendering on Mobile GPUs, Mobile AI & AIM 2022 challenge: Report
Figure 3 for Realistic Bokeh Effect Rendering on Mobile GPUs, Mobile AI & AIM 2022 challenge: Report
Figure 4 for Realistic Bokeh Effect Rendering on Mobile GPUs, Mobile AI & AIM 2022 challenge: Report

As mobile cameras with compact optics are unable to produce a strong bokeh effect, lots of interest is now devoted to deep learning-based solutions for this task. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based bokeh effect rendering approach that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale EBB! bokeh dataset consisting of 5K shallow / wide depth-of-field image pairs captured using the Canon 7D DSLR camera. The runtime of the resulting models was evaluated on the Kirin 9000's Mali GPU that provides excellent acceleration results for the majority of common deep learning ops. A detailed description of all models developed in this challenge is provided in this paper.

* arXiv admin note: substantial text overlap with arXiv:2211.03885; text overlap with arXiv:2105.07809, arXiv:2211.04470, arXiv:2211.05256, arXiv:2211.05910 
Viaarxiv icon

Power Efficient Video Super-Resolution on Mobile NPUs with Deep Learning, Mobile AI & AIM 2022 challenge: Report

Nov 07, 2022
Andrey Ignatov, Radu Timofte, Cheng-Ming Chiang, Hsien-Kai Kuo, Yu-Syuan Xu, Man-Yu Lee, Allen Lu, Chia-Ming Cheng, Chih-Cheng Chen, Jia-Ying Yong, Hong-Han Shuai, Wen-Huang Cheng, Zhuang Jia, Tianyu Xu, Yijian Zhang, Long Bao, Heng Sun, Diankai Zhang, Si Gao, Shaoli Liu, Biao Wu, Xiaofeng Zhang, Chengjian Zheng, Kaidi Lu, Ning Wang, Xiao Sun, HaoDong Wu, Xuncheng Liu, Weizhan Zhang, Caixia Yan, Haipeng Du, Qinghua Zheng, Qi Wang, Wangdu Chen, Ran Duan, Ran Duan, Mengdi Sun, Dan Zhu, Guannan Chen, Hojin Cho, Steve Kim, Shijie Yue, Chenghua Li, Zhengyang Zhuge, Wei Chen, Wenxu Wang, Yufeng Zhou, Xiaochen Cai, Hengxing Cai, Kele Xu, Li Liu, Zehua Cheng, Wenyi Lian, Wenjing Lian

Figure 1 for Power Efficient Video Super-Resolution on Mobile NPUs with Deep Learning, Mobile AI & AIM 2022 challenge: Report
Figure 2 for Power Efficient Video Super-Resolution on Mobile NPUs with Deep Learning, Mobile AI & AIM 2022 challenge: Report
Figure 3 for Power Efficient Video Super-Resolution on Mobile NPUs with Deep Learning, Mobile AI & AIM 2022 challenge: Report
Figure 4 for Power Efficient Video Super-Resolution on Mobile NPUs with Deep Learning, Mobile AI & AIM 2022 challenge: Report

Video super-resolution is one of the most popular tasks on mobile devices, being widely used for an automatic improvement of low-bitrate and low-resolution video streams. While numerous solutions have been proposed for this problem, they are usually quite computationally demanding, demonstrating low FPS rates and power efficiency on mobile devices. In this Mobile AI challenge, we address this problem and propose the participants to design an end-to-end real-time video super-resolution solution for mobile NPUs optimized for low energy consumption. The participants were provided with the REDS training dataset containing video sequences for a 4X video upscaling task. The runtime and power efficiency of all models was evaluated on the powerful MediaTek Dimensity 9000 platform with a dedicated AI processing unit capable of accelerating floating-point and quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 500 FPS rate and 0.2 [Watt / 30 FPS] power consumption. A detailed description of all models developed in the challenge is provided in this paper.

* arXiv admin note: text overlap with arXiv:2105.08826, arXiv:2105.07809, arXiv:2211.04470, arXiv:2211.03885 
Viaarxiv icon

Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report

Nov 07, 2022
Andrey Ignatov, Radu Timofte, Maurizio Denna, Abdel Younes, Ganzorig Gankhuyag, Jingang Huh, Myeong Kyun Kim, Kihwan Yoon, Hyeon-Cheol Moon, Seungho Lee, Yoonsik Choe, Jinwoo Jeong, Sungjei Kim, Maciej Smyl, Tomasz Latkowski, Pawel Kubik, Michal Sokolski, Yujie Ma, Jiahao Chao, Zhou Zhou, Hongfan Gao, Zhengfeng Yang, Zhenbing Zeng, Zhengyang Zhuge, Chenghua Li, Dan Zhu, Mengdi Sun, Ran Duan, Yan Gao, Lingshun Kong, Long Sun, Xiang Li, Xingdong Zhang, Jiawei Zhang, Yaqi Wu, Jinshan Pan, Gaocheng Yu, Jin Zhang, Feng Zhang, Zhe Ma, Hongbin Wang, Hojin Cho, Steve Kim, Huaen Li, Yanbo Ma, Ziwei Luo, Youwei Li, Lei Yu, Zhihong Wen, Qi Wu, Haoqiang Fan, Shuaicheng Liu, Lize Zhang, Zhikai Zong, Jeremy Kwon, Junxi Zhang, Mengyuan Li, Nianxiang Fu, Guanchen Ding, Han Zhu, Zhenzhong Chen, Gen Li, Yuanfan Zhang, Lei Sun, Dafeng Zhang, Neo Yang, Fitz Liu, Jerry Zhao, Mustafa Ayazoglu, Bahri Batuhan Bilecen, Shota Hirose, Kasidis Arunruangsirilert, Luo Ao, Ho Chun Leung, Andrew Wei, Jie Liu, Qiang Liu, Dahai Yu, Ao Li, Lei Luo, Ce Zhu, Seongmin Hong, Dongwon Park, Joonhee Lee, Byeong Hyun Lee, Seunggyu Lee, Se Young Chun, Ruiyuan He, Xuhao Jiang, Haihang Ruan, Xinjian Zhang, Jing Liu, Garas Gendy, Nabil Sabor, Jingchao Hou, Guanghui He

Figure 1 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Figure 2 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Figure 3 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Figure 4 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report

Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.

* arXiv admin note: text overlap with arXiv:2105.07825, arXiv:2105.08826, arXiv:2211.04470, arXiv:2211.03885, arXiv:2211.05256 
Viaarxiv icon

Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report

Nov 07, 2022
Andrey Ignatov, Grigory Malivenko, Radu Timofte, Lukasz Treszczotko, Xin Chang, Piotr Ksiazek, Michal Lopuszynski, Maciej Pioro, Rafal Rudnicki, Maciej Smyl, Yujie Ma, Zhenyu Li, Zehui Chen, Jialei Xu, Xianming Liu, Junjun Jiang, XueChao Shi, Difan Xu, Yanan Li, Xiaotao Wang, Lei Lei, Ziyu Zhang, Yicheng Wang, Zilong Huang, Guozhong Luo, Gang Yu, Bin Fu, Jiaqi Li, Yiran Wang, Zihao Huang, Zhiguo Cao, Marcos V. Conde, Denis Sapozhnikov, Byeong Hyun Lee, Dongwon Park, Seongmin Hong, Joonhee Lee, Seunggyu Lee, Se Young Chun

Figure 1 for Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report
Figure 2 for Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report
Figure 3 for Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report
Figure 4 for Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report

Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.

* arXiv admin note: substantial text overlap with arXiv:2105.08630, arXiv:2211.03885; text overlap with arXiv:2105.08819, arXiv:2105.08826, arXiv:2105.08629, arXiv:2105.07809, arXiv:2105.07825 
Viaarxiv icon

Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report

Nov 07, 2022
Andrey Ignatov, Radu Timofte, Shuai Liu, Chaoyu Feng, Furui Bai, Xiaotao Wang, Lei Lei, Ziyao Yi, Yan Xiang, Zibin Liu, Shaoqing Li, Keming Shi, Dehui Kong, Ke Xu, Minsu Kwon, Yaqi Wu, Jiesi Zheng, Zhihao Fan, Xun Wu, Feng Zhang, Albert No, Minhyeok Cho, Zewen Chen, Xiaze Zhang, Ran Li, Juan Wang, Zhiming Wang, Marcos V. Conde, Ui-Jin Choi, Georgy Perevozchikov, Egor Ershov, Zheng Hui, Mengchuan Dong, Xin Lou, Wei Zhou, Cong Pang, Haina Qin, Mingxuan Cai

Figure 1 for Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report
Figure 2 for Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report
Figure 3 for Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report
Figure 4 for Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report

The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon's 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20-50 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper.

Viaarxiv icon

Fast and Accurate Camera Scene Detection on Smartphones

May 17, 2021
Angeline Pouget, Sidharth Ramesh, Maximilian Giang, Ramithan Chandrapalan, Toni Tanner, Moritz Prussing, Radu Timofte, Andrey Ignatov

Figure 1 for Fast and Accurate Camera Scene Detection on Smartphones
Figure 2 for Fast and Accurate Camera Scene Detection on Smartphones
Figure 3 for Fast and Accurate Camera Scene Detection on Smartphones
Figure 4 for Fast and Accurate Camera Scene Detection on Smartphones

AI-powered automatic camera scene detection mode is nowadays available in nearly any modern smartphone, though the problem of accurate scene prediction has not yet been addressed by the research community. This paper for the first time carefully defines this problem and proposes a novel Camera Scene Detection Dataset (CamSDD) containing more than 11K manually crawled images belonging to 30 different scene categories. We propose an efficient and NPU-friendly CNN model for this task that demonstrates a top-3 accuracy of 99.5% on this dataset and achieves more than 200 FPS on the recent mobile SoCs. An additional in-the-wild evaluation of the obtained solution is performed to analyze its performance and limitation in the real-world scenarios. The dataset and pre-trained models used in this paper are available on the project website.

Viaarxiv icon

Fast and Accurate Quantized Camera Scene Detection on Smartphones, Mobile AI 2021 Challenge: Report

May 17, 2021
Andrey Ignatov, Grigory Malivenko, Radu Timofte, Sheng Chen, Xin Xia, Zhaoyan Liu, Yuwei Zhang, Feng Zhu, Jiashi Li, Xuefeng Xiao, Yuan Tian, Xinglong Wu, Christos Kyrkou, Yixin Chen, Zexin Zhang, Yunbo Peng, Yue Lin, Saikat Dutta, Sourya Dipta Das, Nisarg A. Shah, Himanshu Kumar, Chao Ge, Pei-Lin Wu, Jin-Hua Du, Andrew Batutin, Juan Pablo Federico, Konrad Lyda, Levon Khojoyan, Abhishek Thanki, Sayak Paul, Shahid Siddiqui

Figure 1 for Fast and Accurate Quantized Camera Scene Detection on Smartphones, Mobile AI 2021 Challenge: Report
Figure 2 for Fast and Accurate Quantized Camera Scene Detection on Smartphones, Mobile AI 2021 Challenge: Report
Figure 3 for Fast and Accurate Quantized Camera Scene Detection on Smartphones, Mobile AI 2021 Challenge: Report
Figure 4 for Fast and Accurate Quantized Camera Scene Detection on Smartphones, Mobile AI 2021 Challenge: Report

Camera scene detection is among the most popular computer vision problem on smartphones. While many custom solutions were developed for this task by phone vendors, none of the designed models were available publicly up until now. To address this problem, we introduce the first Mobile AI challenge, where the target is to develop quantized deep learning-based camera scene classification solutions that can demonstrate a real-time performance on smartphones and IoT platforms. For this, the participants were provided with a large-scale CamSDD dataset consisting of more than 11K images belonging to the 30 most important scene categories. The runtime of all models was evaluated on the popular Apple Bionic A11 platform that can be found in many iOS devices. The proposed solutions are fully compatible with all major mobile AI accelerators and can demonstrate more than 100-200 FPS on the majority of recent smartphone platforms while achieving a top-3 accuracy of more than 98%. A detailed description of all models developed in the challenge is provided in this paper.

* Mobile AI 2021 Workshop and Challenges: https://ai-benchmark.com/workshops/mai/2021/. arXiv admin note: substantial text overlap with arXiv:2105.08630; text overlap with arXiv:2105.07825, arXiv:2105.07809, arXiv:2105.08629 
Viaarxiv icon

Fast and Accurate Single-Image Depth Estimation on Mobile Devices, Mobile AI 2021 Challenge: Report

May 17, 2021
Andrey Ignatov, Grigory Malivenko, David Plowman, Samarth Shukla, Radu Timofte, Ziyu Zhang, Yicheng Wang, Zilong Huang, Guozhong Luo, Gang Yu, Bin Fu, Yiran Wang, Xingyi Li, Min Shi, Ke Xian, Zhiguo Cao, Jin-Hua Du, Pei-Lin Wu, Chao Ge, Jiaoyang Yao, Fangwen Tu, Bo Li, Jung Eun Yoo, Kwanggyoon Seo, Jialei Xu, Zhenyu Li, Xianming Liu, Junjun Jiang, Wei-Chi Chen, Shayan Joya, Huanhuan Fan, Zhaobing Kang, Ang Li, Tianpeng Feng, Yang Liu, Chuannan Sheng, Jian Yin, Fausto T. Benavide

Figure 1 for Fast and Accurate Single-Image Depth Estimation on Mobile Devices, Mobile AI 2021 Challenge: Report
Figure 2 for Fast and Accurate Single-Image Depth Estimation on Mobile Devices, Mobile AI 2021 Challenge: Report
Figure 3 for Fast and Accurate Single-Image Depth Estimation on Mobile Devices, Mobile AI 2021 Challenge: Report
Figure 4 for Fast and Accurate Single-Image Depth Estimation on Mobile Devices, Mobile AI 2021 Challenge: Report

Depth estimation is an important computer vision problem with many practical applications to mobile devices. While many solutions have been proposed for this task, they are usually very computationally expensive and thus are not applicable for on-device inference. To address this problem, we introduce the first Mobile AI challenge, where the target is to develop an end-to-end deep learning-based depth estimation solutions that can demonstrate a nearly real-time performance on smartphones and IoT platforms. For this, the participants were provided with a new large-scale dataset containing RGB-depth image pairs obtained with a dedicated stereo ZED camera producing high-resolution depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the popular Raspberry Pi 4 platform with a mobile ARM-based Broadcom chipset. The proposed solutions can generate VGA resolution depth maps at up to 10 FPS on the Raspberry Pi 4 while achieving high fidelity results, and are compatible with any Android or Linux-based mobile devices. A detailed description of all models developed in the challenge is provided in this paper.

* Mobile AI 2021 Workshop and Challenges: https://ai-benchmark.com/workshops/mai/2021/. arXiv admin note: text overlap with arXiv:2105.07809 
Viaarxiv icon