Google Research
Abstract:Invariance and equivariance to the rotation group have been widely discussed in the 3D deep learning community for pointclouds. Yet most proposed methods either use complex mathematical tools that may limit their accessibility, or are tied to specific input data types and network architectures. In this paper, we introduce a general framework built on top of what we call Vector Neuron representations for creating SO(3)-equivariant neural networks for pointcloud processing. Extending neurons from 1D scalars to 3D vectors, our vector neurons enable a simple mapping of SO(3) actions to latent spaces thereby providing a framework for building equivariance in common neural operations -- including linear layers, non-linearities, pooling, and normalizations. Due to their simplicity, vector neurons are versatile and, as we demonstrate, can be incorporated into diverse network architecture backbones, allowing them to process geometry inputs in arbitrary poses. Despite its simplicity, our method performs comparably well in accuracy and generalization with other more complex and specialized state-of-the-art methods on classification and segmentation tasks. We also show for the first time a rotation equivariant reconstruction network.
Abstract:We propose a novel framework for finding correspondences in images based on a deep neural network that, given two images and a query point in one of them, finds its correspondence in the other. By doing so, one has the option to query only the points of interest and retrieve sparse correspondences, or to query all points in an image and obtain dense mappings. Importantly, in order to capture both local and global priors, and to let our model relate between image regions using the most relevant among said priors, we realize our network using a transformer. At inference time, we apply our correspondence network by recursively zooming in around the estimates, yielding a multiscale pipeline able to provide highly-accurate correspondences. Our method significantly outperforms the state of the art on both sparse and dense correspondence problems on multiple datasets and tasks, ranging from wide-baseline stereo to optical flow, without any retraining for a specific dataset. We commit to releasing data, code, and all the tools necessary to train from scratch and ensure reproducibility.
Abstract:We introduce a technique for 3D human keypoint estimation that directly models the notion of spatial uncertainty of a keypoint. Our technique employs a principled approach to modelling spatial uncertainty inspired from techniques in robust statistics. Furthermore, our pipeline requires no 3D ground truth labels, relying instead on (possibly noisy) 2D image-level keypoints. Our method achieves near state-of-the-art performance on Human3.6m while being efficient to evaluate and straightforward to
Abstract:We propose an unsupervised capsule architecture for 3D point clouds. We compute capsule decompositions of objects through permutation-equivariant attention, and self-supervise the process by training with pairs of randomly rotated objects. Our key idea is to aggregate the attention masks into semantic keypoints, and use these to supervise a decomposition that satisfies the capsule invariance/equivariance properties. This not only enables the training of a semantically consistent decomposition, but also allows us to learn a canonicalization operation that enables object-centric reasoning. In doing so, we require neither classification labels nor manually-aligned training datasets to train. Yet, by learning an object-centric representation in an unsupervised manner, our method outperforms the state-of-the-art on 3D point cloud reconstruction, registration, and unsupervised classification. We will release the code and dataset to reproduce our results as soon as the paper is published.
Abstract:Capsule networks are designed to parse an image into a hierarchy of objects, parts and relations. While promising, they remain limited by an inability to learn effective low level part descriptions. To address this issue we propose a novel self-supervised method for learning part descriptors of an image. During training, we exploit motion as a powerful perceptual cue for part definition, using an expressive decoder for part generation and layered image formation with occlusion. Experiments demonstrate robust part discovery in the presence of multiple objects, cluttered backgrounds, and significant occlusion. The resulting part descriptors, a.k.a. part capsules, are decoded into shape masks, filling in occluded pixels, along with relative depth on single images. We also report unsupervised object classification using our capsule parts in a stacked capsule autoencoder.
Abstract:With the advent of Neural Radiance Fields (NeRF), neural networks can now render novel views of a 3D scene with quality that fools the human eye. Yet, generating these images is very computationally intensive, limiting their applicability in practical scenarios. In this paper, we propose a technique based on spatial decomposition capable of mitigating this issue. Our key observation is that there are diminishing returns in employing larger (deeper and/or wider) networks. Hence, we propose to spatially decompose a scene and dedicate smaller networks for each decomposed part. When working together, these networks can render the whole scene. This allows us near-constant inference time regardless of the number of decomposed parts. Moreover, we show that a Voronoi spatial decomposition is preferable for this purpose, as it is provably compatible with the Painter's Algorithm for efficient and GPU-friendly rendering. Our experiments show that for real-world scenes, our method provides up to 3x more efficient inference than NeRF (with the same rendering quality), or an improvement of up to 1.0~dB in PSNR (for the same inference cost).
Abstract:In this technical report, we investigate extending convolutional neural networks to the setting where functions are not sampled in a grid pattern. We show that by treating the samples as the average of a function within a cell, we can find a natural equivalent of most layers used in CNN. We also present an algorithm for running inference for these models exactly using standard convex geometry algorithms.
Abstract:We introduce an end-to-end learnable technique to robustly identify feature edges in 3D point cloud data. We represent these edges as a collection of parametric curves (i.e.,lines, circles, and B-splines). Accordingly, our deep neural network, coined PIE-NET, is trained for parametric inference of edges. The network relies on a "region proposal" architecture, where a first module proposes an over-complete collection of edge and corner points, and a second module ranks each proposal to decide whether it should be considered. We train and evaluate our method on the ABC dataset, a large dataset of CAD models, and compare our results to those produced by traditional (non-learning) processing pipelines, as well as a recent deep learning based edge detector (EC-NET). Our results significantly improve over the state-of-the-art from both a quantitative and qualitative standpoint.
Abstract:We present a generative model for stroke-based drawing tasks which is able to model complex free-form structures. While previous approaches rely on sequence-based models for drawings of basic objects or handwritten text, we propose a model that treats drawings as a collection of strokes that can be composed into complex structures such as diagrams (e.g., flow-charts). At the core of the approach lies a novel auto-encoder that projects variable-length strokes into a latent space of fixed dimension. This representation space allows a relational model, operating in latent space, to better capture the relationship between strokes and to predict subsequent strokes. We demonstrate qualitatively and quantitatively that our proposed approach is able to model the appearance of individual strokes, as well as the compositional structure of larger diagram drawings. Our approach is suitable for interactive use cases such as auto-completing diagrams.
Abstract:We present ShapeFlow, a flow-based model for learning a deformation space for entire classes of 3D shapes with large intra-class variations. ShapeFlow allows learning a multi-template deformation space that is agnostic to shape topology, yet preserves fine geometric details. Different from a generative space where a latent vector is directly decoded into a shape, a deformation space decodes a vector into a continuous flow that can advect a source shape towards a target. Such a space naturally allows the disentanglement of geometric style (coming from the source) and structural pose (conforming to the target). We parametrize the deformation between geometries as a learned continuous flow field via a neural network and show that such deformations can be guaranteed to have desirable properties, such as be bijectivity, freedom from self-intersections, or volume preservation. We illustrate the effectiveness of this learned deformation space for various downstream applications, including shape generation via deformation, geometric style transfer, unsupervised learning of a consistent parameterization for entire classes of shapes, and shape interpolation.