Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

FAAG: Fast Adversarial Audio Generation through Interactive Attack Optimisation

Feb 11, 2022
Yuantian Miao, Chao Chen, Lei Pan, Jun Zhang, Yang Xiang

Automatic Speech Recognition services (ASRs) inherit deep neural networks' vulnerabilities like crafted adversarial examples. Existing methods often suffer from low efficiency because the target phases are added to the entire audio sample, resulting in high demand for computational resources. This paper proposes a novel scheme named FAAG as an iterative optimization-based method to generate targeted adversarial examples quickly. By injecting the noise over the beginning part of the audio, FAAG generates adversarial audio in high quality with a high success rate timely. Specifically, we use audio's logits output to map each character in the transcription to an approximate position of the audio's frame. Thus, an adversarial example can be generated by FAAG in approximately two minutes using CPUs only and around ten seconds with one GPU while maintaining an average success rate over 85%. Specifically, the FAAG method can speed up around 60% compared with the baseline method during the adversarial example generation process. Furthermore, we found that appending benign audio to any suspicious examples can effectively defend against the targeted adversarial attack. We hope that this work paves the way for inventing new adversarial attacks against speech recognition with computational constraints.

  Access Paper or Ask Questions

The Volcspeech system for the ICASSP 2022 multi-channel multi-party meeting transcription challenge

Feb 10, 2022
Chen Shen, Yi Liu, Wenzhi Fan, Bin Wang, Shixue Wen, Yao Tian, Jun Zhang, Jingsheng Yang, Zejun Ma

This paper describes our submission to ICASSP 2022 Multi-channel Multi-party Meeting Transcription (M2MeT) Challenge. For Track 1, we propose several approaches to empower the clustering-based speaker diarization system to handle overlapped speech. Front-end dereverberation and the direction-of-arrival (DOA) estimation are used to improve the accuracy of speaker diarization. Multi-channel combination and overlap detection are applied to reduce the missed speaker error. A modified DOVER-Lap is also proposed to fuse the results of different systems. We achieve the final DER of 5.79% on the Eval set and 7.23% on the Test set. For Track 2, we develop our system using the Conformer model in a joint CTC-attention architecture. Serialized output training is adopted to multi-speaker overlapped speech recognition. We propose a neural front-end module to model multi-channel audio and train the model end-to-end. Various data augmentation methods are utilized to mitigate over-fitting in the multi-channel multi-speaker E2E system. Transformer language model fusion is developed to achieve better performance. The final CER is 19.2% on the Eval set and 20.8% on the Test set.

  Access Paper or Ask Questions

ASR Adaptation for E-commerce Chatbots using Cross-Utterance Context and Multi-Task Language Modeling

Jun 15, 2021
Ashish Shenoy, Sravan Bodapati, Katrin Kirchhoff

Automatic Speech Recognition (ASR) robustness toward slot entities are critical in e-commerce voice assistants that involve monetary transactions and purchases. Along with effective domain adaptation, it is intuitive that cross utterance contextual cues play an important role in disambiguating domain specific content words from speech. In this paper, we investigate various techniques to improve contextualization, content word robustness and domain adaptation of a Transformer-XL neural language model (NLM) to rescore ASR N-best hypotheses. To improve contextualization, we utilize turn level dialogue acts along with cross utterance context carry over. Additionally, to adapt our domain-general NLM towards e-commerce on-the-fly, we use embeddings derived from a finetuned masked LM on in-domain data. Finally, to improve robustness towards in-domain content words, we propose a multi-task model that can jointly perform content word detection and language modeling tasks. Compared to a non-contextual LSTM LM baseline, our best performing NLM rescorer results in a content WER reduction of 19.2% on e-commerce audio test set and a slot labeling F1 improvement of 6.4%.

* Accepted at ACL-IJCNLP 2021 Workshop on e-Commerce and NLP (ECNLP) 

  Access Paper or Ask Questions

Robust parameter design for Wiener-based binaural noise reduction methods in hearing aids

Apr 19, 2021
Diego M. Carmo, Ricardo Borsoi, Márcio H. Costa

This work presents a method for designing the weighting parameter required by Wiener-based binaural noise reduction methods. This parameter establishes the desired tradeoff between noise reduction and binaural cue preservation in hearing aid applications. The proposed strategy was specially derived for the preservation of interaural level difference, interaural time difference and interaural coherence binaural cues. It is defined as a function of the average input noise power at the microphones, providing robustness against the influence of joint changes in noise and speech power (Lombard effect), as well as to signal to noise ratio (SNR) variations. A theoretical framework, based on the mathematical definition of the homogeneity degree, is presented and applied to a generic augmented Wiener-based cost function. The theoretical insights obtained are supported bycomputational simulations and psychoacoustic experiments using the multichannel Wiener filter with interaural transfer function preservation technique (MWF-ITF), as a case study. Statistical analysis indicates that the proposed dynamic structure for the weighting parameter and the design method of its fixed part provide significant robustness against changes in the original binaural cues of both speech and residual noise, at the cost of a small decrease in the noise reduction performance, as compared to the use of a purely fixed weighting parameter.

  Access Paper or Ask Questions

Improvement of Noise-Robust Single-Channel Voice Activity Detection with Spatial Pre-processing

Apr 12, 2021
Max Væhrens, Andreas Jonas Fuglsig, Anders Post Jacobsen, Nicolai Almskou Rasmussen, Victor Mølbach Nissen, Joachim Roland Hejslet, Zheng-Hua Tan

Voice activity detection (VAD) remains a challenge in noisy environments. With access to multiple microphones, prior studies have attempted to improve the noise robustness of VAD by creating multi-channel VAD (MVAD) methods. However, MVAD is relatively new compared to single-channel VAD (SVAD), which has been thoroughly developed in the past. It might therefore be advantageous to improve SVAD methods with pre-processing to obtain superior VAD, which is under-explored. This paper improves SVAD through two pre-processing methods, a beamformer and a spatial target speaker detector. The spatial detector sets signal frames to zero when no potential speaker is present within a target direction. The detector may be implemented as a filter, meaning the input signal for the SVAD is filtered according to the detector's output; or it may be implemented as a spatial VAD to be combined with the SVAD output. The evaluation is made on a noisy reverberant speech database, with clean speech from the Aurora 2 database and with white and babble noise. The results show that SVAD algorithms are significantly improved by the presented pre-processing methods, especially the spatial detector, across all signal-to-noise ratios. The SVAD algorithms with pre-processing significantly outperform a baseline MVAD in challenging noise conditions.

* Submitted to Interspeech 2021 

  Access Paper or Ask Questions

Ultra2Speech -- A Deep Learning Framework for Formant Frequency Estimation and Tracking from Ultrasound Tongue Images

Jun 29, 2020
Pramit Saha, Yadong Liu, Bryan Gick, Sidney Fels

Thousands of individuals need surgical removal of their larynx due to critical diseases every year and therefore, require an alternative form of communication to articulate speech sounds after the loss of their voice box. This work addresses the articulatory-to-acoustic mapping problem based on ultrasound (US) tongue images for the development of a silent-speech interface (SSI) that can provide them with an assistance in their daily interactions. Our approach targets automatically extracting tongue movement information by selecting an optimal feature set from US images and mapping these features to the acoustic space. We use a novel deep learning architecture to map US tongue images from the US probe placed beneath a subject's chin to formants that we call, Ultrasound2Formant (U2F) Net. It uses hybrid spatio-temporal 3D convolutions followed by feature shuffling, for the estimation and tracking of vowel formants from US images. The formant values are then utilized to synthesize continuous time-varying vowel trajectories, via Klatt Synthesizer. Our best model achieves R-squared (R^2) measure of 99.96% for the regression task. Our network lays the foundation for an SSI as it successfully tracks the tongue contour automatically as an internal representation without any explicit annotation.

* Accepted for publication in MICCAI 2020 

  Access Paper or Ask Questions

Improving Performance of End-to-End ASR on Numeric Sequences

Jul 01, 2019
Cal Peyser, Hao Zhang, Tara N. Sainath, Zelin Wu

Recognizing written domain numeric utterances (e.g. I need $1.25.) can be challenging for ASR systems, particularly when numeric sequences are not seen during training. This out-of-vocabulary (OOV) issue is addressed in conventional ASR systems by training part of the model on spoken domain utterances (e.g. I need one dollar and twenty five cents.), for which numeric sequences are composed of in-vocabulary numbers, and then using an FST verbalizer to denormalize the result. Unfortunately, conventional ASR models are not suitable for the low memory setting of on-device speech recognition. E2E models such as RNN-T are attractive for on-device ASR, as they fold the AM, PM and LM of a conventional model into one neural network. However, in the on-device setting the large memory footprint of an FST denormer makes spoken domain training more difficult. In this paper, we investigate techniques to improve E2E model performance on numeric data. We find that using a text-to-speech system to generate additional numeric training data, as well as using a small-footprint neural network to perform spoken-to-written domain denorming, yields improvement in several numeric classes. In the case of the longest numeric sequences, we see reduction of WER by up to a factor of 8.

  Access Paper or Ask Questions

Semi-supervised acoustic model training for five-lingual code-switched ASR

Jun 20, 2019
Astik Biswas, Emre Yılmaz, Febe de Wet, Ewald van der Westhuizen, Thomas Niesler

This paper presents recent progress in the acoustic modelling of under-resourced code-switched (CS) speech in multiple South African languages. We consider two approaches. The first constructs separate bilingual acoustic models corresponding to language pairs (English-isiZulu, English-isiXhosa, English-Setswana and English-Sesotho). The second constructs a single unified five-lingual acoustic model representing all the languages (English, isiZulu, isiXhosa, Setswana and Sesotho). For these two approaches we consider the effectiveness of semi-supervised training to increase the size of the very sparse acoustic training sets. Using approximately 11 hours of untranscribed speech, we show that both approaches benefit from semi-supervised training. The bilingual TDNN-F acoustic models also benefit from the addition of CNN layers (CNN-TDNN-F), while the five-lingual system does not show any significant improvement. Furthermore, because English is common to all language pairs in our data, it dominates when training a unified language model, leading to improved English ASR performance at the expense of the other languages. Nevertheless, the five-lingual model offers flexibility because it can process more than two languages simultaneously, and is therefore an attractive option as an automatic transcription system in a semi-supervised training pipeline.

* Accepted for publication at Interspeech 2019 

  Access Paper or Ask Questions

Language Modeling with Deep Transformers

May 10, 2019
Kazuki Irie, Albert Zeyer, Ralf Schlüter, Hermann Ney

We explore multi-layer autoregressive Transformer models in language modeling for speech recognition. We focus on two aspects. First, we revisit Transformer model configurations specifically for language modeling. We show that well configured Transformer models outperform our baseline models based on the shallow stack of LSTM recurrent neural network layers. We carry out experiments on the open-source LibriSpeech 960hr task, for both 200K vocabulary word-level and 10K byte-pair encoding subword-level language modeling. We apply our word-level models to conventional hybrid speech recognition by lattice rescoring, and the subword-level models to attention based encoder-decoder models by shallow fusion. Second, we show that deep Transformer language models do not require positional encoding. The positional encoding is an essential augmentation for the self-attention mechanism which is invariant to sequence ordering. However, in autoregressive setup, as is the case for language modeling, the amount of information increases along the position dimension, which is a positional signal by its own. The analysis of attention weights shows that deep autoregressive self-attention models can automatically make use of such positional information. We find that removing the positional encoding even slightly improves the performance of these models.

* Submitted to INTERSPEECH 2019 

  Access Paper or Ask Questions

Real time spectrogram inversion on mobile phone

Mar 10, 2022
Oleg Rybakov, Marco Tagliasacchi, Yunpeng Li, Liyang Jiang, Xia Zhang, Fadi Biadsy

With the growth of computing power on mobile phones and privacy concerns over user's data, on-device real time speech processing has become an important research topic. In this paper, we focus on methods for real time spectrogram inversion, where an algorithm receives a portion of the input signal (e.g., one frame) and processes it incrementally, i.e., operating in streaming mode. We present a real time Griffin Lim(GL) algorithm using a sliding window approach in STFT domain. The proposed algorithm is 2.4x faster than real time on the ARM CPU of a Pixel4. In addition we explore a neural vocoder operating in streaming mode and demonstrate the impact of looking ahead on perceptual quality. As little as one hop size (12.5ms) of lookahead is able to significantly improve perceptual quality in comparison to a causal model. We compare GL with the neural vocoder and show different trade-offs in terms of perceptual quality, on-device latency, algorithmic delay, memory footprint and noise sensitivity. For fair quality assessment of the GL approach, we use input log magnitude spectrogram without mel transformation. We evaluate presented real time spectrogram inversion approaches on clean, noisy and atypical speech.

* Submitted to interspeech 2022 

  Access Paper or Ask Questions