What is speech recognition? Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Papers and Code
May 01, 2025
Abstract:Driven by the advancements in generative AI, large machine learning models have revolutionized domains such as image processing, audio synthesis, and speech recognition. While server-based deployments remain the locus of peak performance, the imperative for on-device inference, necessitated by privacy and efficiency considerations, persists. Recognizing GPUs as the on-device ML accelerator with the widest reach, we present ML Drift--an optimized framework that extends the capabilities of state-of-the-art GPU-accelerated inference engines. ML Drift enables on-device execution of generative AI workloads which contain 10 to 100x more parameters than existing on-device generative AI models. ML Drift addresses intricate engineering challenges associated with cross-GPU API development, and ensures broad compatibility across mobile and desktop/laptop platforms, thereby facilitating the deployment of significantly more complex models on resource-constrained devices. Our GPU-accelerated ML/AI inference engine achieves an order-of-magnitude performance improvement relative to existing open-source GPU inference engines.
* to be published in CVPR 2025 Workshop on Efficient and On-Device
Generation (EDGE)
Via

May 19, 2025
Abstract:Advances in deep generative modelling have made it increasingly plausible to train human-level embodied agents. Yet progress has been limited by the absence of large-scale, real-time, multi-modal, and socially interactive datasets that reflect the sensory-motor complexity of natural environments. To address this, we present PLAICraft, a novel data collection platform and dataset capturing multiplayer Minecraft interactions across five time-aligned modalities: video, game output audio, microphone input audio, mouse, and keyboard actions. Each modality is logged with millisecond time precision, enabling the study of synchronous, embodied behaviour in a rich, open-ended world. The dataset comprises over 10,000 hours of gameplay from more than 10,000 global participants.\footnote{We have done a privacy review for the public release of an initial 200-hour subset of the dataset, with plans to release most of the dataset over time.} Alongside the dataset, we provide an evaluation suite for benchmarking model capabilities in object recognition, spatial awareness, language grounding, and long-term memory. PLAICraft opens a path toward training and evaluating agents that act fluently and purposefully in real time, paving the way for truly embodied artificial intelligence.
* 9 pages, 8 figures
Via

Apr 30, 2025
Abstract:Speech Event Extraction (SpeechEE) is a challenging task that lies at the intersection of Automatic Speech Recognition (ASR) and Natural Language Processing (NLP), requiring the identification of structured event information from spoken language. In this work, we present a modular, pipeline-based SpeechEE framework that integrates high-performance ASR with semantic search-enhanced prompting of Large Language Models (LLMs). Our system first classifies speech segments likely to contain events using a hybrid filtering mechanism including rule-based, BERT-based, and LLM-based models. It then employs few-shot LLM prompting, dynamically enriched via semantic similarity retrieval, to identify event triggers and extract corresponding arguments. We evaluate the pipeline using multiple LLMs (Llama3-8B, GPT-4o-mini, and o1-mini) highlighting significant performance gains with o1-mini, which achieves 63.3% F1 on trigger classification and 27.8% F1 on argument classification, outperforming prior benchmarks. Our results demonstrate that pipeline approaches, when empowered by retrieval-augmented LLMs, can rival or exceed end-to-end systems while maintaining interpretability and modularity. This work provides practical insights into LLM-driven event extraction and opens pathways for future hybrid models combining textual and acoustic features.
Via

Apr 26, 2025
Abstract:This work addresses the need for enhanced accuracy and efficiency in speech command recognition systems, a critical component for improving user interaction in various smart applications. Leveraging the robust pretrained YAMNet model and transfer learning, this study develops a method that significantly improves speech command recognition. We adapt and train a YAMNet deep learning model to effectively detect and interpret speech commands from audio signals. Using the extensively annotated Speech Commands dataset (speech_commands_v0.01), our approach demonstrates the practical application of transfer learning to accurately recognize a predefined set of speech commands. The dataset is meticulously augmented, and features are strategically extracted to boost model performance. As a result, the final model achieved a recognition accuracy of 95.28%, underscoring the impact of advanced machine learning techniques on speech command recognition. This achievement marks substantial progress in audio processing technologies and establishes a new benchmark for future research in the field.
* 2024 International Conference on Telecommunications and
Intelligent Systems (ICTIS)
Via

Apr 22, 2025
Abstract:We train and deploy a quantized 1D convolutional neural network model to conduct speech recognition on a highly resource-constrained IoT edge device. This can be useful in various Internet of Things (IoT) applications, such as smart homes and ambient assisted living for the elderly and people with disabilities, just to name a few examples. In this paper, we first create a new dataset with over one hour of audio data that enables our research and will be useful to future studies in this field. Second, we utilize the technologies provided by Edge Impulse to enhance our model's performance and achieve a high Accuracy of up to 97% on our dataset. For the validation, we implement our prototype using the Arduino Nano 33 BLE Sense microcontroller board. This microcontroller board is specifically designed for IoT and AI applications, making it an ideal choice for our target use case scenarios. While most existing research focuses on a limited set of keywords, our model can process 23 different keywords, enabling complex commands.
Via

Apr 21, 2025
Abstract:Incorporating visual modalities to assist Automatic Speech Recognition (ASR) tasks has led to significant improvements. However, existing Audio-Visual Speech Recognition (AVSR) datasets and methods typically rely solely on lip-reading information or speaking contextual video, neglecting the potential of combining these different valuable visual cues within the speaking context. In this paper, we release a multimodal Chinese AVSR dataset, Chinese-LiPS, comprising 100 hours of speech, video, and corresponding manual transcription, with the visual modality encompassing both lip-reading information and the presentation slides used by the speaker. Based on Chinese-LiPS, we develop a simple yet effective pipeline, LiPS-AVSR, which leverages both lip-reading and presentation slide information as visual modalities for AVSR tasks. Experiments show that lip-reading and presentation slide information improve ASR performance by approximately 8\% and 25\%, respectively, with a combined performance improvement of about 35\%. The dataset is available at https://kiri0824.github.io/Chinese-LiPS/
* 6 pages, 7 figures
Via

Apr 28, 2025
Abstract:- The field of natural language processing (NLP) has dramatically expanded within the last decade. Many human-being applications are conducted daily via NLP tasks, starting from machine translation, speech recognition, text generation and recommendations, Part-of-Speech tagging (POS), and Named-Entity Recognition (NER). However, low-resourced languages, such as the Central-Kurdish language (CKL), mainly remain unexamined due to shortage of necessary resources to support their development. The POS tagging task is the base of other NLP tasks; for example, the POS tag set has been used to standardized languages to provide the relationship between words among the sentences, followed by machine translation and text recommendation. Specifically, for the CKL, most of the utilized or provided POS tagsets are neither standardized nor comprehensive. To this end, this study presented an accurate and comprehensive POS tagset for the CKL to provide better performance of the Kurdish NLP tasks. The article also collected most of the POS tags from different studies as well as from Kurdish linguistic experts to standardized part-of-speech tags. The proposed POS tagset is designed to annotate a large CKL corpus and support Kurdish NLP tasks. The initial investigations of this study via comparison with the Universal Dependencies framework for standard languages, show that the proposed POS tagset can streamline or correct sentences more accurately for Kurdish NLP tasks.
* 25 pages, 4 figures, 2 tables
Via

Apr 25, 2025
Abstract:We present Kimi-Audio, an open-source audio foundation model that excels in audio understanding, generation, and conversation. We detail the practices in building Kimi-Audio, including model architecture, data curation, training recipe, inference deployment, and evaluation. Specifically, we leverage a 12.5Hz audio tokenizer, design a novel LLM-based architecture with continuous features as input and discrete tokens as output, and develop a chunk-wise streaming detokenizer based on flow matching. We curate a pre-training dataset that consists of more than 13 million hours of audio data covering a wide range of modalities including speech, sound, and music, and build a pipeline to construct high-quality and diverse post-training data. Initialized from a pre-trained LLM, Kimi-Audio is continual pre-trained on both audio and text data with several carefully designed tasks, and then fine-tuned to support a diverse of audio-related tasks. Extensive evaluation shows that Kimi-Audio achieves state-of-the-art performance on a range of audio benchmarks including speech recognition, audio understanding, audio question answering, and speech conversation. We release the codes, model checkpoints, as well as the evaluation toolkits in https://github.com/MoonshotAI/Kimi-Audio.
Via

Apr 16, 2025
Abstract:Automatic speech recognition (ASR) is crucial for human-machine interaction in diverse applications like conversational agents, industrial robotics, call center automation, and automated subtitling. However, developing high-performance ASR models remains challenging, particularly for low-resource languages like Arabic, due to the scarcity of large, labeled speech datasets, which are costly and labor-intensive to produce. In this work, we employ weakly supervised learning to train an Arabic ASR model using the Conformer architecture. Our model is trained from scratch on 15,000 hours of weakly annotated speech data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), eliminating the need for costly manual transcriptions. Despite the absence of human-verified labels, our approach attains state-of-the-art (SOTA) performance, exceeding all previous efforts in the field of Arabic ASR on the standard benchmarks. By demonstrating the effectiveness of weak supervision as a scalable, cost-efficient alternative to traditional supervised approaches, paving the way for improved ASR systems in low resource settings.
Via

Apr 21, 2025
Abstract:In this paper, we propose StableQuant, a novel adaptive post-training quantization (PTQ) algorithm for widely used speech foundation models (SFMs). While PTQ has been successfully employed for compressing large language models (LLMs) due to its ability to bypass additional fine-tuning, directly applying these techniques to SFMs may not yield optimal results, as SFMs utilize distinct network architecture for feature extraction. StableQuant demonstrates optimal quantization performance regardless of the network architecture type, as it adaptively determines the quantization range for each layer by analyzing both the scale distributions and overall performance. We evaluate our algorithm on two SFMs, HuBERT and wav2vec2.0, for an automatic speech recognition (ASR) task, and achieve superior performance compared to traditional PTQ methods. StableQuant successfully reduces the sizes of SFM models to a quarter and doubles the inference speed while limiting the word error rate (WER) performance drop to less than 0.3% with 8-bit quantization.
* Accepted at ICASSP 2025
Via
