Abstract:Advances in deep generative modelling have made it increasingly plausible to train human-level embodied agents. Yet progress has been limited by the absence of large-scale, real-time, multi-modal, and socially interactive datasets that reflect the sensory-motor complexity of natural environments. To address this, we present PLAICraft, a novel data collection platform and dataset capturing multiplayer Minecraft interactions across five time-aligned modalities: video, game output audio, microphone input audio, mouse, and keyboard actions. Each modality is logged with millisecond time precision, enabling the study of synchronous, embodied behaviour in a rich, open-ended world. The dataset comprises over 10,000 hours of gameplay from more than 10,000 global participants.\footnote{We have done a privacy review for the public release of an initial 200-hour subset of the dataset, with plans to release most of the dataset over time.} Alongside the dataset, we provide an evaluation suite for benchmarking model capabilities in object recognition, spatial awareness, language grounding, and long-term memory. PLAICraft opens a path toward training and evaluating agents that act fluently and purposefully in real time, paving the way for truly embodied artificial intelligence.
Abstract:Scalability is a significant challenge when it comes to applying differential privacy to training deep neural networks. The commonly used DP-SGD algorithm struggles to maintain a high level of privacy protection while achieving high accuracy on even moderately sized models. To tackle this challenge, we take advantage of the fact that neural networks are overparameterized, which allows us to improve neural network training with differential privacy. Specifically, we introduce a new training paradigm that uses \textit{pre-pruning} and \textit{gradient-dropping} to reduce the parameter space and improve scalability. The process starts with pre-pruning the parameters of the original network to obtain a smaller model that is then trained with DP-SGD. During training, less important gradients are dropped, and only selected gradients are updated. Our training paradigm introduces a tension between the rates of pre-pruning and gradient-dropping, privacy loss, and classification accuracy. Too much pre-pruning and gradient-dropping reduces the model's capacity and worsens accuracy, while training a smaller model requires less privacy budget for achieving good accuracy. We evaluate the interplay between these factors and demonstrate the effectiveness of our training paradigm for both training from scratch and fine-tuning pre-trained networks on several benchmark image classification datasets. The tools can also be readily incorporated into existing training paradigms.