Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo": models, code, and papers

StreetStyle: Exploring world-wide clothing styles from millions of photos

Jun 06, 2017
Kevin Matzen, Kavita Bala, Noah Snavely

Each day billions of photographs are uploaded to photo-sharing services and social media platforms. These images are packed with information about how people live around the world. In this paper we exploit this rich trove of data to understand fashion and style trends worldwide. We present a framework for visual discovery at scale, analyzing clothing and fashion across millions of images of people around the world and spanning several years. We introduce a large-scale dataset of photos of people annotated with clothing attributes, and use this dataset to train attribute classifiers via deep learning. We also present a method for discovering visually consistent style clusters that capture useful visual correlations in this massive dataset. Using these tools, we analyze millions of photos to derive visual insight, producing a first-of-its-kind analysis of global and per-city fashion choices and spatio-temporal trends.

  

Person Recognition in Personal Photo Collections

Oct 20, 2018
Seong Joon Oh, Rodrigo Benenson, Mario Fritz, Bernt Schiele

People nowadays share large parts of their personal lives through social media. Being able to automatically recognise people in personal photos may greatly enhance user convenience by easing photo album organisation. For human identification task, however, traditional focus of computer vision has been face recognition and pedestrian re-identification. Person recognition in social media photos sets new challenges for computer vision, including non-cooperative subjects (e.g. backward viewpoints, unusual poses) and great changes in appearance. To tackle this problem, we build a simple person recognition framework that leverages convnet features from multiple image regions (head, body, etc.). We propose new recognition scenarios that focus on the time and appearance gap between training and testing samples. We present an in-depth analysis of the importance of different features according to time and viewpoint generalisability. In the process, we verify that our simple approach achieves the state of the art result on the PIPA benchmark, arguably the largest social media based benchmark for person recognition to date with diverse poses, viewpoints, social groups, and events. Compared the conference version of the paper, this paper additionally presents (1) analysis of a face recogniser (DeepID2+), (2) new method naeil2 that combines the conference version method naeil and DeepID2+ to achieve state of the art results even compared to post-conference works, (3) discussion of related work since the conference version, (4) additional analysis including the head viewpoint-wise breakdown of performance, and (5) results on the open-world setup.

* 18 pages, 20 figures; to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence 
  

Series Photo Selection via Multi-view Graph Learning

Mar 18, 2022
Jin Huang, Lu Zhang, Yongshun Gong, Jian Zhang, Xiushan Nie, Yilong Yin

Series photo selection (SPS) is an important branch of the image aesthetics quality assessment, which focuses on finding the best one from a series of nearly identical photos. While a great progress has been observed, most of the existing SPS approaches concentrate solely on extracting features from the original image, neglecting that multiple views, e.g, saturation level, color histogram and depth of field of the image, will be of benefit to successfully reflecting the subtle aesthetic changes. Taken multi-view into consideration, we leverage a graph neural network to construct the relationships between multi-view features. Besides, multiple views are aggregated with an adaptive-weight self-attention module to verify the significance of each view. Finally, a siamese network is proposed to select the best one from a series of nearly identical photos. Experimental results demonstrate that our model accomplish the highest success rates compared with competitive methods.

  

Unpaired Photo-to-Caricature Translation on Faces in the Wild

Jul 25, 2018
Ziqiang Zheng, Wang Chao, Zhibin Yu, Nan Wang, Haiyong Zheng, Bing Zheng

Recently, image-to-image translation has been made much progress owing to the success of conditional Generative Adversarial Networks (cGANs). And some unpaired methods based on cycle consistency loss such as DualGAN, CycleGAN and DiscoGAN are really popular. However, it's still very challenging for translation tasks with the requirement of high-level visual information conversion, such as photo-to-caricature translation that requires satire, exaggeration, lifelikeness and artistry. We present an approach for learning to translate faces in the wild from the source photo domain to the target caricature domain with different styles, which can also be used for other high-level image-to-image translation tasks. In order to capture global structure with local statistics while translation, we design a dual pathway model with one coarse discriminator and one fine discriminator. For generator, we provide one extra perceptual loss in association with adversarial loss and cycle consistency loss to achieve representation learning for two different domains. Also the style can be learned by the auxiliary noise input. Experiments on photo-to-caricature translation of faces in the wild show considerable performance gain of our proposed method over state-of-the-art translation methods as well as its potential real applications.

* 28 pages, 11 figures 
  

Batch-Based Activity Recognition from Egocentric Photo-Streams

Aug 25, 2017
Alejandro Cartas, Mariella Dimiccoli, Petia Radeva

Activity recognition from long unstructured egocentric photo-streams has several applications in assistive technology such as health monitoring and frailty detection, just to name a few. However, one of its main technical challenges is to deal with the low frame rate of wearable photo-cameras, which causes abrupt appearance changes between consecutive frames. In consequence, important discriminatory low-level features from motion such as optical flow cannot be estimated. In this paper, we present a batch-driven approach for training a deep learning architecture that strongly rely on Long short-term units to tackle this problem. We propose two different implementations of the same approach that process a photo-stream sequence using batches of fixed size with the goal of capturing the temporal evolution of high-level features. The main difference between these implementations is that one explicitly models consecutive batches by overlapping them. Experimental results over a public dataset acquired by three users demonstrate the validity of the proposed architectures to exploit the temporal evolution of convolutional features over time without relying on event boundaries.

* 8 pages, 7 figures, 1 table. To appear at the ICCV 2017 workshop on Egocentric Perception, Interaction and Computing 
  

Towards social pattern characterization in egocentric photo-streams

Jan 09, 2018
Maedeh Aghaei, Mariella Dimiccoli, Cristian Canton Ferrer, Petia Radeva

Following the increasingly popular trend of social interaction analysis in egocentric vision, this manuscript presents a comprehensive study for automatic social pattern characterization of a wearable photo-camera user, by relying on the visual analysis of egocentric photo-streams. The proposed framework consists of three major steps. The first step is to detect social interactions of the user where the impact of several social signals on the task is explored. The detected social events are inspected in the second step for categorization into different social meetings. These two steps act at event-level where each potential social event is modeled as a multi-dimensional time-series, whose dimensions correspond to a set of relevant features for each task, and LSTM is employed to classify the time-series. The last step of the framework is to characterize social patterns, which is essentially to infer the diversity and frequency of the social relations of the user through discovery of recurrences of the same people across the whole set of social events of the user. Experimental evaluation over a dataset acquired by 9 users demonstrates promising results on the task of social pattern characterization from egocentric photo-streams.

* 42 pages, 14 figures. Submitted to Elsevier, Computer Vision and Image Understanding (Under Review) 
  

Bridging Unpaired Facial Photos And Sketches By Line-drawings

Feb 25, 2021
Meimei Shang, Fei Gao, Xiang Li, Jingjie Zhu, Lingna Dai

In this paper, we propose a novel method to learn face sketch synthesis models by using unpaired data. Our main idea is bridging the photo domain $\mathcal{X}$ and the sketch domain $Y$ by using the line-drawing domain $\mathcal{Z}$. Specially, we map both photos and sketches to line-drawings by using a neural style transfer method, i.e. $F: \mathcal{X}/\mathcal{Y} \mapsto \mathcal{Z}$. Consequently, we obtain \textit{pseudo paired data} $(\mathcal{Z}, \mathcal{Y})$, and can learn the mapping $G:\mathcal{Z} \mapsto \mathcal{Y}$ in a supervised learning manner. In the inference stage, given a facial photo, we can first transfer it to a line-drawing and then to a sketch by $G \circ F$. Additionally, we propose a novel stroke loss for generating different types of strokes. Our method, termed sRender, accords well with human artists' rendering process. Experimental results demonstrate that sRender can generate multi-style sketches, and significantly outperforms existing unpaired image-to-image translation methods.

* accepted by ICASSP2021 
  

Batch-based Activity Recognition from Egocentric Photo-Streams Revisited

May 09, 2018
Alejandro Cartas, Juan Marin, Petia Radeva, Mariella Dimiccoli

Wearable cameras can gather large a\-mounts of image data that provide rich visual information about the daily activities of the wearer. Motivated by the large number of health applications that could be enabled by the automatic recognition of daily activities, such as lifestyle characterization for habit improvement, context-aware personal assistance and tele-rehabilitation services, we propose a system to classify 21 daily activities from photo-streams acquired by a wearable photo-camera. Our approach combines the advantages of a Late Fusion Ensemble strategy relying on convolutional neural networks at image level with the ability of recurrent neural networks to account for the temporal evolution of high level features in photo-streams without relying on event boundaries. The proposed batch-based approach achieved an overall accuracy of 89.85\%, outperforming state of the art end-to-end methodologies. These results were achieved on a dataset consists of 44,902 egocentric pictures from three persons captured during 26 days in average.

* Cartas, A., Marin, J., Radeva, P. et al. Pattern Anal Applic (2018). https://doi.org/10.1007/s10044-018-0708-1 
  
<<
3
4
5
6
7
8
9
10
11
12
13
14
15
>>