The integration of IoT devices in healthcare introduces significant security and reliability challenges, increasing susceptibility to cyber threats and operational anomalies. This study proposes a machine learning-driven framework for (1) detecting malicious cyberattacks and (2) identifying faulty device anomalies, leveraging a dataset of 200,000 records. Eight machine learning models are evaluated across three learning approaches: supervised learning (XGBoost, K-Nearest Neighbors (K- NN)), semi-supervised learning (Generative Adversarial Networks (GAN), Variational Autoencoders (VAE)), and unsupervised learning (One-Class Support Vector Machine (SVM), Isolation Forest, Graph Neural Networks (GNN), and Long Short-Term Memory (LSTM) Autoencoders). The comprehensive evaluation was conducted across multiple metrics like F1-score, precision, recall, accuracy, ROC-AUC, computational efficiency. XGBoost achieved 99\% accuracy with minimal computational overhead (0.04s) for anomaly detection, while Isolation Forest balanced precision and recall effectively. LSTM Autoencoders underperformed with lower accuracy and higher latency. For attack detection, KNN achieved near-perfect precision, recall, and F1-score with the lowest computational cost (0.05s), followed by VAE at 97% accuracy. GAN showed the highest computational cost with lowest accuracy and ROC-AUC. These findings enhance IoT-enabled healthcare security through effective anomaly detection strategies. By improving early detection of cyber threats and device failures, this framework has the potential to prevent data breaches, minimize system downtime, and ensure the continuous and safe operation of medical devices, ultimately safeguarding patient health and trust in IoT-driven healthcare solutions.
The rapid evolution of generative adversarial networks (GANs) and diffusion models has made synthetic media increasingly realistic, raising societal concerns around misinformation, identity fraud, and digital trust. Existing deepfake detection methods either rely on deep learning, which suffers from poor generalization and vulnerability to distortions, or forensic analysis, which is interpretable but limited against new manipulation techniques. This study proposes a hybrid framework that fuses forensic features, including noise residuals, JPEG compression traces, and frequency-domain descriptors, with deep learning representations from convolutional neural networks (CNNs) and vision transformers (ViTs). Evaluated on benchmark datasets (FaceForensics++, Celeb-DF v2, DFDC), the proposed model consistently outperformed single-method baselines and demonstrated superior performance compared to existing state-of-the-art hybrid approaches, achieving F1-scores of 0.96, 0.82, and 0.77, respectively. Robustness tests demonstrated stable performance under compression (F1 = 0.87 at QF = 50), adversarial perturbations (AUC = 0.84), and unseen manipulations (F1 = 0.79). Importantly, explainability analysis showed that Grad-CAM and forensic heatmaps overlapped with ground-truth manipulated regions in 82 percent of cases, enhancing transparency and user trust. These findings confirm that hybrid approaches provide a balanced solution, combining the adaptability of deep models with the interpretability of forensic cues, to develop resilient and trustworthy deepfake detection systems.
Generative Adversarial Networks (GANs) are proficient at generating synthetic data but continue to suffer from mode collapse, where the generator produces a narrow range of outputs that fool the discriminator but fail to capture the full data distribution. This limitation is particularly problematic, as generative models are increasingly deployed in real-world applications that demand both diversity and uncertainty awareness. In response, we introduce BI-DCGAN, a Bayesian extension of DCGAN that incorporates model uncertainty into the generative process while maintaining computational efficiency. BI-DCGAN integrates Bayes by Backprop to learn a distribution over network weights and employs mean-field variational inference to efficiently approximate the posterior distribution during GAN training. We establishes the first theoretical proof, based on covariance matrix analysis, that Bayesian modeling enhances sample diversity in GANs. We validate this theoretical result through extensive experiments on standard generative benchmarks, demonstrating that BI-DCGAN produces more diverse and robust outputs than conventional DCGANs, while maintaining training efficiency. These findings position BI-DCGAN as a scalable and timely solution for applications where both diversity and uncertainty are critical, and where modern alternatives like diffusion models remain too resource-intensive.
Synthetic data generation has emerged as a promising approach to address the challenges of using sensitive financial data in machine learning applications. By leveraging generative models, such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), it is possible to create artificial datasets that preserve the statistical properties of real financial records while mitigating privacy risks and regulatory constraints. Despite the rapid growth of this field, a comprehensive synthesis of the current research landscape has been lacking. This systematic review consolidates and analyses 72 studies published since 2018 that focus on synthetic financial data generation. We categorise the types of financial information synthesised, the generative methods employed, and the evaluation strategies used to assess data utility and privacy. The findings indicate that GAN-based approaches dominate the literature, particularly for generating time-series market data and tabular credit data. While several innovative techniques demonstrate potential for improved realism and privacy preservation, there remains a notable lack of rigorous evaluation of privacy safeguards across studies. By providing an integrated overview of generative techniques, applications, and evaluation methods, this review highlights critical research gaps and offers guidance for future work aimed at developing robust, privacy-preserving synthetic data solutions for the financial domain.
Anomaly detection in time-series data is a critical challenge with significant implications for network security. Recent quantum machine learning approaches, such as quantum kernel methods and variational quantum circuits, have shown promise in capturing complex data distributions for anomaly detection but remain constrained by limited qubit counts. We introduce in this work a novel Quantum Gated Recurrent Unit (QGRU)-based Generative Adversarial Network (GAN) employing Successive Data Injection (SuDaI) and a multi-metric gating strategy for robust network anomaly detection. Our model uniquely utilizes a quantum-enhanced generator that outputs parameters (mean and log-variance) of a Gaussian distribution via reparameterization, combined with a Wasserstein critic to stabilize adversarial training. Anomalies are identified through a novel gating mechanism that initially flags potential anomalies based on Gaussian uncertainty estimates and subsequently verifies them using a composite of critic scores and reconstruction errors. Evaluated on benchmark datasets, our method achieves a high time-series aware F1 score (TaF1) of 89.43% demonstrating superior capability in detecting anomalies accurately and promptly as compared to existing classical and quantum models. Furthermore, the trained QGRU-WGAN was deployed on real IBM Quantum hardware, where it retained high anomaly detection performance, confirming its robustness and practical feasibility on current noisy intermediate-scale quantum (NISQ) devices.
Cross-view localization and synthesis are two fundamental tasks in cross-view visual understanding, which deals with cross-view datasets: overhead (satellite or aerial) and ground-level imagery. These tasks have gained increasing attention due to their broad applications in autonomous navigation, urban planning, and augmented reality. Cross-view localization aims to estimate the geographic position of ground-level images based on information provided by overhead imagery while cross-view synthesis seeks to generate ground-level images based on information from the overhead imagery. Both tasks remain challenging due to significant differences in viewing perspective, resolution, and occlusion, which are widely embedded in cross-view datasets. Recent years have witnessed rapid progress driven by the availability of large-scale datasets and novel approaches. Typically, cross-view localization is formulated as an image retrieval problem where ground-level features are matched with tiled overhead images feature, extracted by convolutional neural networks (CNNs) or vision transformers (ViTs) for cross-view feature embedding. Cross-view synthesis, on the other hand, seeks to generate ground-level views based on information from overhead imagery, generally using generative adversarial networks (GANs) or diffusion models. This paper presents a comprehensive survey of advances in cross-view localization and synthesis, reviewing widely used datasets, highlighting key challenges, and providing an organized overview of state-of-the-art techniques. Furthermore, it discusses current limitations, offers comparative analyses, and outlines promising directions for future research. We also include the project page via https://github.com/GDAOSU/Awesome-Cross-View-Methods.
With the rapid advancement of internet technologies, network services have become critical for delivering diverse and reliable applications to users. However, the exponential growth in the number of available services has resulted in many similar offerings, posing significant challenges in selecting optimal services. Predicting Quality of Service (QoS) accurately thus becomes a fundamental prerequisite for ensuring reliability and user satisfaction. However, existing QoS prediction methods often fail to capture rich contextual information and exhibit poor performance under extreme data sparsity and structural noise. To bridge this gap, we propose a novel architecture, QoSMGAA, specifically designed to enhance prediction accuracy in complex and noisy network service environments. QoSMGAA integrates a multi-order attention mechanism to aggregate extensive contextual data and predict missing QoS values effectively. Additionally, our method incorporates adversarial neural networks to perform autoregressive supervised learning based on transformed interaction matrices. To capture complex, higher-order interactions among users and services, we employ a discrete sampling technique leveraging the Gumbel-Softmax method to generate informative negative samples. Comprehensive experimental validation conducted on large-scale real-world datasets demonstrates that our proposed model significantly outperforms existing baseline methods, highlighting its strong potential for practical deployment in service selection and recommendation scenarios.
Graph Neural Networks(GNNs) are vulnerable to backdoor attacks, where adversaries implant malicious triggers to manipulate model predictions. Existing trigger generators are often simplistic in structure and overly reliant on specific features, confining them to a single graph learning paradigm, such as graph supervised learning, graph contrastive learning, or graph prompt learning. This specialized design, which aligns the trigger with one learning objective, results in poor transferability when applied to other learning paradigms. For instance, triggers generated for the graph supervised learning paradigm perform poorly when tested within graph contrastive learning or graph prompt learning environments. Furthermore, these simple generators often fail to utilize complex structural information or node diversity within the graph data. These constraints limit the attack success rates of such methods in general testing scenarios. Therefore, to address these limitations, we propose Cross-Paradigm Graph Backdoor Attacks with Promptable Subgraph Triggers(CP-GBA), a new transferable graph backdoor attack that employs graph prompt learning(GPL) to train a set of universal subgraph triggers. First, we distill a compact yet expressive trigger set from target graphs, which is structured as a queryable repository, by jointly enforcing class-awareness, feature richness, and structural fidelity. Second, we conduct the first exploration of the theoretical transferability of GPL to train these triggers under prompt-based objectives, enabling effective generalization to diverse and unseen test-time paradigms. Extensive experiments across multiple real-world datasets and defense scenarios show that CP-GBA achieves state-of-the-art attack success rates.
In this work, we propose PSScreen V2, a partially supervised self-training framework for multiple retinal disease screening. Unlike previous methods that rely on fully labelled or single-domain datasets, PSScreen V2 is designed to learn from multiple partially labelled datasets with different distributions, addressing both label absence and domain shift challenges. To this end, PSScreen V2 adopts a three-branch architecture with one teacher and two student networks. The teacher branch generates pseudo labels from weakly augmented images to address missing labels, while the two student branches introduce novel feature augmentation strategies: Low-Frequency Dropout (LF-Dropout), which enhances domain robustness by randomly discarding domain-related low-frequency components, and Low-Frequency Uncertainty (LF-Uncert), which estimates uncertain domain variability via adversarially learned Gaussian perturbations of low-frequency statistics. Extensive experiments on multiple in-domain and out-of-domain fundus datasets demonstrate that PSScreen V2 achieves state-of-the-art performance and superior domain generalization ability. Furthermore, compatibility tests with diverse backbones, including the vision foundation model DINOv2, as well as evaluations on chest X-ray datasets, highlight the universality and adaptability of the proposed framework. The codes are available at https://github.com/boyiZheng99/PSScreen_V2.
Current medical practice depends on standardized treatment frameworks and empirical methodologies that neglect individual patient variations, leading to suboptimal health outcomes. We develop a comprehensive system integrating Large Language Models (LLMs), Conditional Tabular Generative Adversarial Networks (CTGAN), T-learner counterfactual models, and contextual bandit approaches to provide customized, data-informed clinical recommendations. The approach utilizes LLMs to process unstructured medical narratives into structured datasets (93.2% accuracy), uses CTGANs to produce realistic synthetic patient data (55% accuracy via two-sample verification), deploys T-learners to forecast patient-specific treatment responses (84.3% accuracy), and integrates prior-informed contextual bandits to enhance online therapeutic selection by effectively balancing exploration of new possibilities with exploitation of existing knowledge. Testing on stage III colon cancer datasets revealed that our KernelUCB approach obtained 0.60-0.61 average reward scores across 5,000 rounds, exceeding other reference methods. This comprehensive system overcomes cold-start limitations in online learning environments, improves computational effectiveness, and constitutes notable progress toward individualized medicine adapted to specific patient characteristics.