Vulnerability detection is the process of identifying security vulnerabilities in software applications or systems.
The Internet of Things (IoT) has revolutionized connectivity by linking billions of devices worldwide. However, this rapid expansion has also introduced severe security vulnerabilities, making IoT devices attractive targets for malware such as the Mirai botnet. Power side-channel analysis has recently emerged as a promising technique for detecting malware activity based on device power consumption patterns. However, the resilience of such detection systems under adversarial manipulation remains underexplored. This work presents a novel adversarial strategy against power side-channel-based malware detection. By injecting structured dummy code into the scanning phase of the Mirai botnet, we dynamically perturb power signatures to evade AI/ML-based anomaly detection without disrupting core functionality. Our approach systematically analyzes the trade-offs between stealthiness, execution overhead, and evasion effectiveness across multiple state-of-the-art models for side-channel analysis, using a custom dataset collected from smartphones of diverse manufacturers. Experimental results show that our adversarial modifications achieve an average attack success rate of 75.2\%, revealing practical vulnerabilities in power-based intrusion detection frameworks.
AI-text detectors face a critical robustness challenge: adversarial paraphrasing attacks that preserve semantics while evading detection. We introduce StealthRL, a reinforcement learning framework that stress-tests detector robustness under realistic adversarial conditions. StealthRL trains a paraphrase policy against a multi-detector ensemble using Group Relative Policy Optimization (GRPO) with LoRA adapters on Qwen3-4B, optimizing a composite reward that balances detector evasion with semantic preservation. We evaluate six attack settings (M0-M5) against three detector families (RoBERTa, FastDetectGPT, and Binoculars) at the security-relevant 1% false positive rate operating point. StealthRL achieves near-zero detection (0.001 mean TPR@1%FPR), reduces mean AUROC from 0.74 to 0.27, and attains a 99.9% attack success rate. Critically, attacks transfer to a held-out detector family not seen during training, revealing shared architectural vulnerabilities rather than detector-specific brittleness. We additionally conduct LLM-based quality evaluation via Likert scoring, analyze detector score distributions to explain why evasion succeeds, and provide per-detector AUROC with bootstrap confidence intervals. Our results expose significant robustness gaps in current AI-text detection and establish StealthRL as a principled adversarial evaluation protocol. Code and evaluation pipeline are publicly available at https://github.com/suraj-ranganath/StealthRL.
Large language models (LLMs) are increasingly used in software development, yet their tendency to generate insecure code remains a major barrier to real-world deployment. Existing secure code alignment methods often suffer from a functionality--security paradox, improving security at the cost of substantial utility degradation. We propose SecCoderX, an online reinforcement learning framework for functionality-preserving secure code generation. SecCoderX first bridges vulnerability detection and secure code generation by repurposing mature detection resources in two ways: (i) synthesizing diverse, reality-grounded vulnerability-inducing coding tasks for online RL rollouts, and (ii) training a reasoning-based vulnerability reward model that provides scalable and reliable security supervision. Together, these components are unified in an online RL loop to align code LLMs to generate secure and functional code. Extensive experiments demonstrate that SecCoderX achieves state-of-the-art performance, improving Effective Safety Rate (ESR) by approximately 10% over unaligned models, whereas prior methods often degrade ESR by 14-54%. We release our code, dataset and model checkpoints at https://github.com/AndrewWTY/SecCoderX.
We argue that when it comes to producing secure code with AI, the prevailing "fighting fire with fire" approach -- using probabilistic AI-based checkers or attackers to secure probabilistically generated code -- fails to address the long tail of security bugs. As a result, systems may remain exposed to zero-day vulnerabilities that can be discovered by better-resourced or more persistent adversaries. While neurosymbolic approaches that combine LLMs with formal methods are attractive in principle, we argue that they are difficult to reconcile with the "vibe coding" workflow common in LLM-assisted development: unless the end-to-end verification pipeline is fully automated, developers are repeatedly asked to validate specifications, resolve ambiguities, and adjudicate failures, making the human-in-the-loop a likely point of weakness, compromising secure-by-construction guarantees. In this paper we argue that stronger security guarantees can be obtained by enforcing security constraints during code generation (e.g., via constrained decoding), rather than relying solely on post-hoc detection and repair. This direction is particularly promising for diffusion-style code models, whose approach provides a natural elegant opportunity for modular, hierarchical security enforcement, allowing us to combine lower-latency generation techniques with generating secure-by-construction code.
The evolution of Large Language Models (LLMs) into agentic systems that perform autonomous reasoning and tool use has created significant intellectual property (IP) value. We demonstrate that these systems are highly vulnerable to imitation attacks, where adversaries steal proprietary capabilities by training imitation models on victim outputs. Crucially, existing LLM watermarking techniques fail in this domain because real-world agentic systems often operate as grey boxes, concealing the internal reasoning traces required for verification. This paper presents AGENTWM, the first watermarking framework designed specifically for agentic models. AGENTWM exploits the semantic equivalence of action sequences, injecting watermarks by subtly biasing the distribution of functionally identical tool execution paths. This mechanism allows AGENTWM to embed verifiable signals directly into the visible action trajectory while remaining indistinguishable to users. We develop an automated pipeline to generate robust watermark schemes and a rigorous statistical hypothesis testing procedure for verification. Extensive evaluations across three complex domains demonstrate that AGENTWM achieves high detection accuracy with negligible impact on agent performance. Our results confirm that AGENTWM effectively protects agentic IP against adaptive adversaries, who cannot remove the watermarks without severely degrading the stolen model's utility.
Vision-Language Models (VLMs) are now a core part of modern AI. Recent work proposed several visual jailbreak attacks using single/ holistic images. However, contemporary VLMs demonstrate strong robustness against such attacks due to extensive safety alignment through preference optimization (e.g., RLHF). In this work, we identify a new vulnerability: while VLM pretraining and instruction tuning generalize well to split-image inputs, safety alignment is typically performed only on holistic images and does not account for harmful semantics distributed across multiple image fragments. Consequently, VLMs often fail to detect and refuse harmful split-image inputs, where unsafe cues emerge only after combining images. We introduce novel split-image visual jailbreak attacks (SIVA) that exploit this misalignment. Unlike prior optimization-based attacks, which exhibit poor black-box transferability due to architectural and prior mismatches across models, our attacks evolve in progressive phases from naive splitting to an adaptive white-box attack, culminating in a black-box transfer attack. Our strongest strategy leverages a novel adversarial knowledge distillation (Adv-KD) algorithm to substantially improve cross-model transferability. Evaluations on three state-of-the-art modern VLMs and three jailbreak datasets demonstrate that our strongest attack achieves up to 60% higher transfer success than existing baselines. Lastly, we propose efficient ways to address this critical vulnerability in the current VLM safety alignment.
Open-source software (OSS) is foundational to modern digital infrastructure, yet this context for group work continues to struggle to ensure sufficient contributions in many critical cases. This literature review explores how artificial intelligence (AI) is being leveraged to address critical challenges to OSS sustainability, including maintaining contributor engagement, securing funding, ensuring code quality and security, fostering healthy community dynamics, and preventing project abandonment. Synthesizing recent interdisciplinary research, the paper identifies key applications of AI in this domain, including automated bug triaging, system maintenance, contributor onboarding and mentorship, community health analytics, vulnerability detection, and task automation. The review also examines the limitations and ethical concerns that arise from applying AI in OSS contexts, including data availability, bias and fairness, transparency, risks of misuse, and the preservation of human-centered values in collaborative development. By framing AI not as a replacement but as a tool to augment human infrastructure, this study highlights both the promise and pitfalls of AI-driven interventions. It concludes by identifying critical research gaps and proposing future directions at the intersection of AI, sustainability, and OSS, aiming to support more resilient and equitable open-source ecosystems.
Machine learning (ML) models are increasingly deployed in cybersecurity applications such as phishing detection and network intrusion prevention. However, these models remain vulnerable to adversarial perturbations small, deliberate input modifications that can degrade detection accuracy and compromise interpretability. This paper presents an empirical study of adversarial robustness and explainability drift across two cybersecurity domains phishing URL classification and network intrusion detection. We evaluate the impact of L (infinity) bounded Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) perturbations on model accuracy and introduce a quantitative metric, the Robustness Index (RI), defined as the area under the accuracy perturbation curve. Gradient based feature sensitivity and SHAP based attribution drift analyses reveal which input features are most susceptible to adversarial manipulation. Experiments on the Phishing Websites and UNSW NB15 datasets show consistent robustness trends, with adversarial training improving RI by up to 9 percent while maintaining clean-data accuracy. These findings highlight the coupling between robustness and interpretability degradation and underscore the importance of quantitative evaluation in the design of trustworthy, AI-driven cybersecurity systems.
Large language models are increasingly deployed as *deep agents* that plan, maintain persistent state, and invoke external tools, shifting safety failures from unsafe text to unsafe *trajectories*. We introduce **AgentFence**, an architecture-centric security evaluation that defines 14 trust-boundary attack classes spanning planning, memory, retrieval, tool use, and delegation, and detects failures via *trace-auditable conversation breaks* (unauthorized or unsafe tool use, wrong-principal actions, state/objective integrity violations, and attack-linked deviations). Holding the base model fixed, we evaluate eight agent archetypes under persistent multi-turn interaction and observe substantial architectural variation in mean security break rate (MSBR), ranging from $0.29 \pm 0.04$ (LangGraph) to $0.51 \pm 0.07$ (AutoGPT). The highest-risk classes are operational: Denial-of-Wallet ($0.62 \pm 0.08$), Authorization Confusion ($0.54 \pm 0.10$), Retrieval Poisoning ($0.47 \pm 0.09$), and Planning Manipulation ($0.44 \pm 0.11$), while prompt-centric classes remain below $0.20$ under standard settings. Breaks are dominated by boundary violations (SIV 31%, WPA 27%, UTI+UTA 24%, ATD 18%), and authorization confusion correlates with objective and tool hijacking ($ρ\approx 0.63$ and $ρ\approx 0.58$). AgentFence reframes agent security around what matters operationally: whether an agent stays within its goal and authority envelope over time.
In today's enterprise network landscape, the combination of perimeter and distributed firewall rules governs connectivity. To address challenges arising from increased traffic and diverse network architectures, organizations employ automated tools for firewall rule and access policy generation. Yet, effectively managing risks arising from dynamically generated policies, especially concerning critical asset exposure, remains a major challenge. This challenge is amplified by evolving network structures due to trends like remote users, bring-your-own devices, and cloud integration. This paper introduces a novel graph neural network model for identifying weighted shortest paths. The model aids in detecting network misconfigurations and high-risk connectivity paths that threaten critical assets, potentially exploited in zero-day attacks -- cyber-attacks exploiting undisclosed vulnerabilities. The proposed Pro-ZD framework adopts a proactive approach, automatically fine-tuning firewall rules and access policies to address high-risk connections and prevent unauthorized access. Experimental results highlight the robustness and transferability of Pro-ZD, achieving over 95% average accuracy in detecting high-risk connections. \