Vulnerability detection is the process of identifying security vulnerabilities in software applications or systems.
The integration of LLMs into vulnerability detection (VD) has shifted the field toward interpretable and context-aware analysis. While post-training methods have shown promise in general coding tasks, their systematic application to VD remains underexplored. In this paper, we present the first comprehensive investigation into the post-training pipeline for LLM-based VD, spanning from cold-start SFT to off-policy preference optimization and on-policy RL, uncovering how data curation, stage interactions, reward mechanisms, and evaluation protocols collectively dictate the efficacy of model training and assessment. Our study identifies practical guidelines and insights: (1) SFT based on rejection sampling greatly outperforms rationalization-based supervision, which can introduce hallucinations due to ground-truth leakage. (2) While increased SFT epochs constantly benefit preference optimization, excessive SFT inhibits self-exploration during RL, ultimately limiting performance gains. (3) Coarse-grained reward signals often mislead RL, whereas fine-grained root-cause judgments ensure reliable credit assignment. Specification-based rewards offer further benefits but incur significant effort in specification generation. (4) Although filtering extremely hard-to-detect vulnerability samples improves RL training efficiency, the cost of performance loss should be considered in practical applications. (5) Models trained under GRPO significantly outperform those using SFT and preference optimization (i.e., DPO and ORPO), as well as a series of zero-shot SOTA LLMs, underscoring the significant potential of on-policy RL for LLM-based VD. (6) In contrast to binary matching that tends to overestimate performance, LLM-as-a-Judge based on root-cause analysis provides a more robust evaluation protocol, although its accuracy varies across judge models with different levels of security expertise.
LoRA adapters let users fine-tune large language models (LLMs) efficiently. However, LoRA adapters are shared through open repositories like Hugging Face Hub \citep{huggingface_hub_docs}, making them vulnerable to backdoor attacks. Current detection methods require running the model with test input data -- making them impractical for screening thousands of adapters where the trigger for backdoor behavior is unknown. We detect poisoned adapters by analyzing their weight matrices directly, without running the model -- making our method data-agnostic. Our method extracts simple statistics -- how concentrated the singular values are, their entropy, and the distribution shape -- and flags adapters that deviate from normal patterns. We evaluate the method on 500 LoRA adapters -- 400 clean, and 100 poisoned for Llama-3.2-3B on instruction and reasoning datasets: Alpaca, Dolly, GSM8K, ARC-Challenge, SQuADv2, NaturalQuestions, HumanEval, and GLUE dataset. We achieve 97\% detection accuracy with less than 2\% false positives.
Vulnerability detection tools are widely adopted in software projects, yet they often overwhelm maintainers with false positives and non-actionable reports. Automated exploitation systems can help validate these reports; however, existing approaches typically operate in isolation from detection pipelines, failing to leverage readily available metadata such as vulnerability type and source-code location. In this paper, we investigate how reported security vulnerabilities can be assessed in a realistic grey-box exploitation setting that leverages minimal vulnerability metadata, specifically a CWE classification and a vulnerable code location. We introduce Agentic eXploit Engine (AXE), a multi-agent framework for Web application exploitation that maps lightweight detection metadata to concrete exploits through decoupled planning, code exploration, and dynamic execution feedback. Evaluated on the CVE-Bench dataset, AXE achieves a 30% exploitation success rate, a 3x improvement over state-of-the-art black-box baselines. Even in a single-agent configuration, grey-box metadata yields a 1.75x performance gain. Systematic error analysis shows that most failed attempts arise from specific reasoning gaps, including misinterpreted vulnerability semantics and unmet execution preconditions. For successful exploits, AXE produces actionable, reproducible proof-of-concept artifacts, demonstrating its utility in streamlining Web vulnerability triage and remediation. We further evaluate AXE's generalizability through a case study on a recent real-world vulnerability not included in CVE-Bench.
Federated learning (FL) enables distributed model training across edge devices while preserving data locality. This decentralized approach has emerged as a promising solution for collaborative learning on sensitive user data, effectively addressing the longstanding privacy concerns inherent in centralized systems. However, the decentralized nature of FL exposes new security vulnerabilities, especially backdoor attacks that threaten model integrity. To investigate this critical concern, this paper presents the Layer Smoothing Attack (LSA), a novel backdoor attack that exploits layer-specific vulnerabilities in neural networks. First, a Layer Substitution Analysis methodology systematically identifies backdoor-critical (BC) layers that contribute most significantly to backdoor success. Subsequently, LSA strategically manipulates these BC layers to inject persistent backdoors while remaining undetected by state-of-the-art defense mechanisms. Extensive experiments across diverse model architectures and datasets demonstrate that LSA achieves a remarkably backdoor success rate of up to 97% while maintaining high model accuracy on the primary task, consistently bypassing modern FL defenses. These findings uncover fundamental vulnerabilities in current FL security frameworks, demonstrating that future defenses must incorporate layer-aware detection and mitigation strategies.
We propose a geometric taxonomy of large language model hallucinations based on observable signatures in token embedding cluster structure. By analyzing the static embedding spaces of 11 transformer models spanning encoder (BERT, RoBERTa, ELECTRA, DeBERTa, ALBERT, MiniLM, DistilBERT) and decoder (GPT-2) architectures, we identify three operationally distinct hallucination types: Type 1 (center-drift) under weak context, Type 2 (wrong-well convergence) to locally coherent but contextually incorrect cluster regions, and Type 3 (coverage gaps) where no cluster structure exists. We introduce three measurable geometric statistics: α (polarity coupling), \b{eta} (cluster cohesion), and λ_s (radial information gradient). Across all 11 models, polarity structure (α > 0.5) is universal (11/11), cluster cohesion (\b{eta} > 0) is universal (11/11), and the radial information gradient is significant (9/11, p < 0.05). We demonstrate that the two models failing λ_s significance -- ALBERT and MiniLM -- do so for architecturally explicable reasons: factorized embedding compression and distillation-induced isotropy, respectively. These findings establish the geometric prerequisites for type-specific hallucination detection and yield testable predictions about architecture-dependent vulnerability profiles.
Vulnerability detection is crucial to protect software security. Nowadays, deep learning (DL) is the most promising technique to automate this detection task, leveraging its superior ability to extract patterns and representations within extensive code volumes. Despite its promise, DL-based vulnerability detection remains in its early stages, with model performance exhibiting variability across datasets. Drawing insights from other well-explored application areas like computer vision, we conjecture that the imbalance issue (the number of vulnerable code is extremely small) is at the core of the phenomenon. To validate this, we conduct a comprehensive empirical study involving nine open-source datasets and two state-of-the-art DL models. The results confirm our conjecture. We also obtain insightful findings on how existing imbalance solutions perform in vulnerability detection. It turns out that these solutions perform differently as well across datasets and evaluation metrics. Specifically: 1) Focal loss is more suitable to improve the precision, 2) mean false error and class-balanced loss encourages the recall, and 3) random over-sampling facilitates the F1-measure. However, none of them excels across all metrics. To delve deeper, we explore external influences on these solutions and offer insights for developing new solutions.
Evaluation and alignment pipelines for large language models increasingly rely on LLM-based judges, whose behavior is guided by natural-language rubrics and validated on benchmarks. We identify a previously under-recognized vulnerability in this workflow, which we term Rubric-Induced Preference Drift (RIPD). Even when rubric edits pass benchmark validation, they can still produce systematic and directional shifts in a judge's preferences on target domains. Because rubrics serve as a high-level decision interface, such drift can emerge from seemingly natural, criterion-preserving edits and remain difficult to detect through aggregate benchmark metrics or limited spot-checking. We further show this vulnerability can be exploited through rubric-based preference attacks, in which benchmark-compliant rubric edits steer judgments away from a fixed human or trusted reference on target domains, systematically inducing RIPD and reducing target-domain accuracy up to 9.5% (helpfulness) and 27.9% (harmlessness). When these judgments are used to generate preference labels for downstream post-training, the induced bias propagates through alignment pipelines and becomes internalized in trained policies. This leads to persistent and systematic drift in model behavior. Overall, our findings highlight evaluation rubrics as a sensitive and manipulable control interface, revealing a system-level alignment risk that extends beyond evaluator reliability alone. The code is available at: https://github.com/ZDCSlab/Rubrics-as-an-Attack-Surface. Warning: Certain sections may contain potentially harmful content that may not be appropriate for all readers.
Rapidly evolving AI exhibits increasingly strong autonomy and goal-directed capabilities, accompanied by derivative systemic risks that are more unpredictable, difficult to control, and potentially irreversible. However, current AI safety evaluation systems suffer from critical limitations such as restricted risk dimensions and failed frontier risk detection. The lagging safety benchmarks and alignment technologies can hardly address the complex challenges posed by cutting-edge AI models. To bridge this gap, we propose the "ForesightSafety Bench" AI Safety Evaluation Framework, beginning with 7 major Fundamental Safety pillars and progressively extends to advanced Embodied AI Safety, AI4Science Safety, Social and Environmental AI risks, Catastrophic and Existential Risks, as well as 8 critical industrial safety domains, forming a total of 94 refined risk dimensions. To date, the benchmark has accumulated tens of thousands of structured risk data points and assessment results, establishing a widely encompassing, hierarchically clear, and dynamically evolving AI safety evaluation framework. Based on this benchmark, we conduct systematic evaluation and in-depth analysis of over twenty mainstream advanced large models, identifying key risk patterns and their capability boundaries. The safety capability evaluation results reveals the widespread safety vulnerabilities of frontier AI across multiple pillars, particularly focusing on Risky Agentic Autonomy, AI4Science Safety, Embodied AI Safety, Social AI Safety and Catastrophic and Existential Risks. Our benchmark is released at https://github.com/Beijing-AISI/ForesightSafety-Bench. The project website is available at https://foresightsafety-bench.beijing-aisi.ac.cn/.
Software vulnerability detection (SVD) is a critical challenge in modern systems. Large language models (LLMs) offer natural-language explanations alongside predictions, but most work focuses on binary evaluation, and explanations often lack semantic consistency with Common Weakness Enumeration (CWE) categories. We propose VulReaD, a knowledge-graph-guided approach for vulnerability reasoning and detection that moves beyond binary classification toward CWE-level reasoning. VulReaD leverages a security knowledge graph (KG) as a semantic backbone and uses a strong teacher LLM to generate CWE-consistent contrastive reasoning supervision, enabling student model training without manual annotations. Students are fine-tuned with Odds Ratio Preference Optimization (ORPO) to encourage taxonomy-aligned reasoning while suppressing unsupported explanations. Across three real-world datasets, VulReaD improves binary F1 by 8-10% and multi-class classification by 30% Macro-F1 and 18% Micro-F1 compared to state-of-the-art baselines. Results show that LLMs outperform deep learning baselines in binary detection and that KG-guided reasoning enhances CWE coverage and interpretability.
As rail transport moves toward higher degrees of automation under initiatives like the R2DATO project [1], accurate and reliable train localization has become essential. Global Satellite Navigation System (GNSS) is considered as a main technology in enabling operational advancements including Automatic Train Operation (ATO), moving block signaling, and virtual coupling, which are the core components of the Horizon Europe 2024 rail digitalization agenda. However, GNSS signal integrity is increasingly threatened by intentional and unintentional radio frequency interference (RFI). This include jamming and spoofing, which are particularly concerning as the broadcasted signal can deliberately disrupt or manipulate the GNSS signal. - Jamming refers to an intentional form of interference that induces disturbances in the GNSS band, causing performance degradation or can even entirely block the receiver from acquiring the satellite signals. - Spoofing involves broadcasting counterfeit satellite signals to deceive the GNSS receiver, leading to inaccurate estimation of position, navigation and timing information. This concern about interference is not unique to rail applications. The aeronautical sector has long recognized the risks posed by GNSS interference, with extensive documentation on its impact on navigation, landing procedures, and surveillance systems. In recent years, awareness of these risks has expanded to other transport sectors. Within the automotive industry, particularly in Intelligent Transport Systems (ITS), several studies [2][3][4] have addressed the vulnerability of GNSS against interference. Similar concerns are now emerging in the rail domain [5][6][7], especially as GNSS is increasingly adopted in safety-critical applications. In literature, several levels of actions have been explored, ranging from merely the detection of a malicious signal at the initial phase to the application of advanced signal processing methods aimed at suppressing the effects of interference [8]. In alignment with the goal of the R2DATO project, we evaluated the impact of various classes of interference signals such as amplitude modulation (AM), frequency modulation (FM), pulsed, frequency hopping and chirp signals on the GNSS observables including Automatic Gain Control (AGC) and Carrier to Noise Ratio (CNO) as measured by a Commercial Off-The-Shelf (COTS). However, in this work, the analysis is only limited to impact of chirp interference on GPS L1 receiver observables and detection performance.