Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

Neural Sinkhorn Topic Model

Aug 12, 2020
He Zhao, Dinh Phung, Viet Huynh, Trung Le, Wray Buntine

In this paper, we present a new topic modelling approach via the theory of optimal transport (OT). Specifically, we present a document with two distributions: a distribution over the words (doc-word distribution) and a distribution over the topics (doc-topic distribution). For one document, the doc-word distribution is the observed, sparse, low-level representation of the content, while the doc-topic distribution is the latent, dense, high-level one of the same content. Learning a topic model can then be viewed as a process of minimising the transportation of the semantic information from one distribution to the other. This new viewpoint leads to a novel OT-based topic modelling framework, which enjoys appealing simplicity, effectiveness, and efficiency. Extensive experiments show that our framework significantly outperforms several state-of-the-art models in terms of both topic quality and document representations.

  Access Paper or Ask Questions

Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

Feb 09, 2022
Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang, Jiawei Han

Topic models have been the prominent tools for automatic topic discovery from text corpora. Despite their effectiveness, topic models suffer from several limitations including the inability of modeling word ordering information in documents, the difficulty of incorporating external linguistic knowledge, and the lack of both accurate and efficient inference methods for approximating the intractable posterior. Recently, pretrained language models (PLMs) have brought astonishing performance improvements to a wide variety of tasks due to their superior representations of text. Interestingly, there have not been standard approaches to deploy PLMs for topic discovery as better alternatives to topic models. In this paper, we begin by analyzing the challenges of using PLM representations for topic discovery, and then propose a joint latent space learning and clustering framework built upon PLM embeddings. In the latent space, topic-word and document-topic distributions are jointly modeled so that the discovered topics can be interpreted by coherent and distinctive terms and meanwhile serve as meaningful summaries of the documents. Our model effectively leverages the strong representation power and superb linguistic features brought by PLMs for topic discovery, and is conceptually simpler than topic models. On two benchmark datasets in different domains, our model generates significantly more coherent and diverse topics than strong topic models, and offers better topic-wise document representations, based on both automatic and human evaluations.

* WWW 2022. (Code:

  Access Paper or Ask Questions

Keyword-based Topic Modeling and Keyword Selection

Jan 22, 2020
Xingyu Wang, Lida Zhang, Diego Klabjan

Certain type of documents such as tweets are collected by specifying a set of keywords. As topics of interest change with time it is beneficial to adjust keywords dynamically. The challenge is that these need to be specified ahead of knowing the forthcoming documents and the underlying topics. The future topics should mimic past topics of interest yet there should be some novelty in them. We develop a keyword-based topic model that dynamically selects a subset of keywords to be used to collect future documents. The generative process first selects keywords and then the underlying documents based on the specified keywords. The model is trained by using a variational lower bound and stochastic gradient optimization. The inference consists of finding a subset of keywords where given a subset the model predicts the underlying topic-word matrix for the unknown forthcoming documents. We compare the keyword topic model against a benchmark model using viral predictions of tweets combined with a topic model. The keyword-based topic model outperforms this sophisticated baseline model by 67%.

  Access Paper or Ask Questions

A new evaluation framework for topic modeling algorithms based on synthetic corpora

Jan 28, 2019
Hanyu Shi, Martin Gerlach, Isabel Diersen, Doug Downey, Luis A. N. Amaral

Topic models are in widespread use in natural language processing and beyond. Here, we propose a new framework for the evaluation of probabilistic topic modeling algorithms based on synthetic corpora containing an unambiguously defined ground truth topic structure. The major innovation of our approach is the ability to quantify the agreement between the planted and inferred topic structures by comparing the assigned topic labels at the level of the tokens. In experiments, our approach yields novel insights about the relative strengths of topic models as corpus characteristics vary, and the first evidence of an "undetectable phase" for topic models when the planted structure is weak. We also establish the practical relevance of the insights gained for synthetic corpora by predicting the performance of topic modeling algorithms in classification tasks in real-world corpora.

* accepted for AISTATS 2019; code available at; Main text (11 pages, 5 figures) and Supplementary Material (14 pages, 11 figures) 

  Access Paper or Ask Questions

The Dynamic Embedded Topic Model

Jul 12, 2019
Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei

Topic modeling analyzes documents to learn meaningful patterns of words. Dynamic topic models capture how these patterns vary over time for a set of documents that were collected over a large time span. We develop the dynamic embedded topic model (D-ETM), a generative model of documents that combines dynamic latent Dirichlet allocation (D-LDA) and word embeddings. The D-ETM models each word with a categorical distribution whose parameter is given by the inner product between the word embedding and an embedding representation of its assigned topic at a particular time step. The word embeddings allow the D-ETM to generalize to rare words. The D-ETM learns smooth topic trajectories by defining a random walk prior over the embeddings of the topics. We fit the D-ETM using structured amortized variational inference. On a collection of United Nations debates, we find that the D-ETM learns interpretable topics and outperforms D-LDA in terms of both topic quality and predictive performance.

  Access Paper or Ask Questions

Progressive EM for Latent Tree Models and Hierarchical Topic Detection

Aug 05, 2015
Peixian Chen, Nevin L. Zhang, Leonard K. M. Poon, Zhourong Chen

Hierarchical latent tree analysis (HLTA) is recently proposed as a new method for topic detection. It differs fundamentally from the LDA-based methods in terms of topic definition, topic-document relationship, and learning method. It has been shown to discover significantly more coherent topics and better topic hierarchies. However, HLTA relies on the Expectation-Maximization (EM) algorithm for parameter estimation and hence is not efficient enough to deal with large datasets. In this paper, we propose a method to drastically speed up HLTA using a technique inspired by recent advances in the moments method. Empirical experiments show that our method greatly improves the efficiency of HLTA. It is as efficient as the state-of-the-art LDA-based method for hierarchical topic detection and finds substantially better topics and topic hierarchies.

  Access Paper or Ask Questions

TDAM: a Topic-Dependent Attention Model for Sentiment Analysis

Aug 18, 2019
Gabriele Pergola, Lin Gui, Yulan He

We propose a topic-dependent attention model for sentiment classification and topic extraction. Our model assumes that a global topic embedding is shared across documents and employs an attention mechanism to derive local topic embedding for words and sentences. These are subsequently incorporated in a modified Gated Recurrent Unit (GRU) for sentiment classification and extraction of topics bearing different sentiment polarities. Those topics emerge from the words' local topic embeddings learned by the internal attention of the GRU cells in the context of a multi-task learning framework. In this paper, we present the hierarchical architecture, the new GRU unit and the experiments conducted on users' reviews which demonstrate classification performance on a par with the state-of-the-art methodologies for sentiment classification and topic coherence outperforming the current approaches for supervised topic extraction. In addition, our model is able to extract coherent aspect-sentiment clusters despite using no aspect-level annotations for training.

* Information Processing & Management, 56 (6), 102084, July 2019 

  Access Paper or Ask Questions

Topic Compositional Neural Language Model

Feb 26, 2018
Wenlin Wang, Zhe Gan, Wenqi Wang, Dinghan Shen, Jiaji Huang, Wei Ping, Sanjeev Satheesh, Lawrence Carin

We propose a Topic Compositional Neural Language Model (TCNLM), a novel method designed to simultaneously capture both the global semantic meaning and the local word ordering structure in a document. The TCNLM learns the global semantic coherence of a document via a neural topic model, and the probability of each learned latent topic is further used to build a Mixture-of-Experts (MoE) language model, where each expert (corresponding to one topic) is a recurrent neural network (RNN) that accounts for learning the local structure of a word sequence. In order to train the MoE model efficiently, a matrix factorization method is applied, by extending each weight matrix of the RNN to be an ensemble of topic-dependent weight matrices. The degree to which each member of the ensemble is used is tied to the document-dependent probability of the corresponding topics. Experimental results on several corpora show that the proposed approach outperforms both a pure RNN-based model and other topic-guided language models. Further, our model yields sensible topics, and also has the capacity to generate meaningful sentences conditioned on given topics.

* To appear in AISTATS 2018, updated version 

  Access Paper or Ask Questions

A fast algorithm with minimax optimal guarantees for topic models with an unknown number of topics

Jun 12, 2018
Xin Bing, Florentina Bunea, Marten Wegkamp

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

  Access Paper or Ask Questions

Topic Browsing for Research Papers with Hierarchical Latent Tree Analysis

Sep 29, 2016
Leonard K. M. Poon, Nevin L. Zhang

Academic researchers often need to face with a large collection of research papers in the literature. This problem may be even worse for postgraduate students who are new to a field and may not know where to start. To address this problem, we have developed an online catalog of research papers where the papers have been automatically categorized by a topic model. The catalog contains 7719 papers from the proceedings of two artificial intelligence conferences from 2000 to 2015. Rather than the commonly used Latent Dirichlet Allocation, we use a recently proposed method called hierarchical latent tree analysis for topic modeling. The resulting topic model contains a hierarchy of topics so that users can browse the topics from the top level to the bottom level. The topic model contains a manageable number of general topics at the top level and allows thousands of fine-grained topics at the bottom level. It also can detect topics that have emerged recently.

  Access Paper or Ask Questions