What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
Jun 09, 2025
Abstract:We present GaRAGe, a large RAG benchmark with human-curated long-form answers and annotations of each grounding passage, allowing a fine-grained evaluation of whether LLMs can identify relevant grounding when generating RAG answers. Our benchmark contains 2366 questions of diverse complexity, dynamism, and topics, and includes over 35K annotated passages retrieved from both private document sets and the Web, to reflect real-world RAG use cases. This makes it an ideal test bed to evaluate an LLM's ability to identify only the relevant information necessary to compose a response, or provide a deflective response when there is insufficient information. Evaluations of multiple state-of-the-art LLMs on GaRAGe show that the models tend to over-summarise rather than (a) ground their answers strictly on the annotated relevant passages (reaching at most a Relevance-Aware Factuality Score of 60%), or (b) deflect when no relevant grounding is available (reaching at most 31% true positive rate in deflections). The F1 in attribution to relevant sources is at most 58.9%, and we show that performance is particularly reduced when answering time-sensitive questions and when having to draw knowledge from sparser private grounding sources.
* ACL 2025 (Findings)
Via

Jun 06, 2025
Abstract:Large language models are popular around the world due to their powerful understanding capabilities. As the core component of LLMs, accelerating Transformer through parallelization has gradually become a hot research topic. Mask layers introduce sparsity into Transformer to reduce calculations. However, previous works rarely focus on the performance optimization of sparse Transformer. Moreover, rule-based mechanisms ignore the fusion opportunities of mixed-type operators and fail to adapt to various sequence lengths. To address the above problems, we propose STOF, a framework that incorporates optimizations for Sparse Transformer via flexible masking and operator fusion on GPU. We firstly unify the storage format and kernel implementation for the multi-head attention. Then, we map fusion schemes to compilation templates and determine the optimal parameter setting through a two-stage search engine. The experimental results show that compared to the state-of-the-art work, STOF achieves maximum speedups of 1.7x in MHA computation and 1.5x in end-to-end inference.
Via

Jun 10, 2025
Abstract:This research-to-practice work-in-progress (WIP) paper presents an AI-enabled smart tutor designed to provide homework assessment and feedback for students in an undergraduate circuit analysis course. We detail the tutor's design philosophy and core components, including open-ended question answering and homework feedback generation. The prompts are carefully crafted to optimize responses across different problems. The smart tutor was deployed on the Microsoft Azure platform and is currently in use in an undergraduate circuit analysis course at the School of Electrical and Computer Engineering in a large, public, research-intensive institution in the Southeastern United States. Beyond offering personalized instruction and feedback, the tutor collects student interaction data, which is summarized and shared with the course instructor. To evaluate its effectiveness, we collected student feedback, with 90.9% of responses indicating satisfaction with the tutor. Additionally, we analyze a subset of collected data on preliminary circuit analysis topics to assess tutor usage frequency for each problem and identify frequently asked questions. These insights help instructors gain real-time awareness of student difficulties, enabling more targeted classroom instruction. In future work, we will release a full analysis once the complete dataset is available after the Spring 2025 semester. We also explore the potential applications of this smart tutor across a broader range of engineering disciplines by developing improved prompts, diagram-recognition methods, and database management strategies, which remain ongoing areas of research.
* Accepted to 2025 Frontiers in Education (FIE) Conference
Via

Jun 06, 2025
Abstract:Generative AI (genAI) technologies -- specifically, large language models (LLMs) -- and search have evolving relations. We argue for a novel perspective: using genAI to enrich a document corpus so as to improve query-based retrieval effectiveness. The enrichment is based on modifying existing documents or generating new ones. As an empirical proof of concept, we use LLMs to generate documents relevant to a topic which are more retrievable than existing ones. In addition, we demonstrate the potential merits of using corpus enrichment for retrieval augmented generation (RAG) and answer attribution in question answering.
Via

May 19, 2025
Abstract:Topic models are statistical tools that allow their users to gain qualitative and quantitative insights into the contents of textual corpora without the need for close reading. They can be applied in a wide range of settings from discourse analysis, through pretraining data curation, to text filtering. Topic models are typically parameter-rich, complex models, and interpreting these parameters can be challenging for their users. It is typical practice for users to interpret topics based on the top 10 highest ranking terms on a given topic. This list-of-words approach, however, gives users a limited and biased picture of the content of topics. Thoughtful user interface design and visualizations can help users gain a more complete and accurate understanding of topic models' output. While some visualization utilities do exist for topic models, these are typically limited to a certain type of topic model. We introduce topicwizard, a framework for model-agnostic topic model interpretation, that provides intuitive and interactive tools that help users examine the complex semantic relations between documents, words and topics learned by topic models.
* 9 pages, 9 figures
Via

Jun 06, 2025
Abstract:When exposed to complex queries containing multiple conditions, today's large language models (LLMs) tend to produce responses that only partially satisfy the query while neglecting certain conditions. We therefore introduce the concept of Intent Hallucination. In this phenomenon, LLMs either omit (neglecting to address certain parts) or misinterpret (responding to invented query parts) elements of the given query, leading to intent hallucinated generation. To systematically evaluate intent hallucination, we introduce FAITHQA, a novel benchmark for intent hallucination that contains 20,068 problems, covering both query-only and retrieval-augmented generation (RAG) setups with varying topics and difficulty. FAITHQA is the first hallucination benchmark that goes beyond factual verification, tailored to identify the fundamental cause of intent hallucination. By evaluating various LLMs on FAITHQA, we find that (1) intent hallucination is a common issue even for state-of-the-art models, and (2) the phenomenon stems from omission or misinterpretation of LLMs. To facilitate future research, we introduce an automatic LLM generation evaluation metric, CONSTRAINT SCORE, for detecting intent hallucination. Human evaluation results demonstrate that CONSTRAINT SCORE is closer to human performance for intent hallucination compared to baselines.
* Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (ACL 2025)
* Accepted to ACL 2025 main conference
Via

May 26, 2025
Abstract:Refusal discovery is the task of identifying the full set of topics that a language model refuses to discuss. We introduce this new problem setting and develop a refusal discovery method, LLM-crawler, that uses token prefilling to find forbidden topics. We benchmark the LLM-crawler on Tulu-3-8B, an open-source model with public safety tuning data. Our crawler manages to retrieve 31 out of 36 topics within a budget of 1000 prompts. Next, we scale the crawl to a frontier model using the prefilling option of Claude-Haiku. Finally, we crawl three widely used open-weight models: Llama-3.3-70B and two of its variants finetuned for reasoning: DeepSeek-R1-70B and Perplexity-R1-1776-70B. DeepSeek-R1-70B reveals patterns consistent with censorship tuning: The model exhibits "thought suppression" behavior that indicates memorization of CCP-aligned responses. Although Perplexity-R1-1776-70B is robust to censorship, LLM-crawler elicits CCP-aligned refusals answers in the quantized model. Our findings highlight the critical need for refusal discovery methods to detect biases, boundaries, and alignment failures of AI systems.
Via

May 30, 2025
Abstract:Endowing dialogue agents with persona information has proven to significantly improve the consistency and diversity of their generations. While much focus has been placed on aligning dialogues with provided personas, the adaptation to the interlocutor's profile remains largely underexplored. In this work, we investigate three key aspects: (1) a model's ability to align responses with both the provided persona and the interlocutor's; (2) its robustness when dealing with familiar versus unfamiliar interlocutors and topics, and (3) the impact of additional fine-tuning on specific persona-based dialogues. We evaluate dialogues generated with diverse speaker pairings and topics, framing the evaluation as an author identification task and employing both LLM-as-a-judge and human evaluations. By systematically masking or disclosing information about the interlocutor, we assess its impact on dialogue generation. Results show that access to the interlocutor's persona improves the recognition of the target speaker, while masking it does the opposite. Although models generalise well across topics, they struggle with unfamiliar interlocutors. Finally, we found that in zero-shot settings, LLMs often copy biographical details, facilitating identification but trivialising the task.
Via

Jun 09, 2025
Abstract:AI-generated images have reached a quality level at which humans are incapable of reliably distinguishing them from real images. To counteract the inherent risk of fraud and disinformation, the detection of AI-generated images is a pressing challenge and an active research topic. While many of the presented methods claim to achieve high detection accuracy, they are usually evaluated under idealized conditions. In particular, the adversarial robustness is often neglected, potentially due to a lack of awareness or the substantial effort required to conduct a comprehensive robustness analysis. In this work, we tackle this problem by providing a simpler means to assess the robustness of AI-generated image detectors. We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples. The dataset is created by running attacks against an ensemble of seven state-of-the-art detectors and images generated by four different text-to-image models. Extensive experiments show that our methodology generates adversarial images that transfer with a high success rate to unseen detectors, which can be used to quickly provide an approximate yet still reliable estimate of a detector's adversarial robustness. Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples, highlighting the critical need for the development of more robust methods. We release our dataset at https://huggingface.co/datasets/aimagelab/RAID and evaluation code at https://github.com/pralab/RAID.
Via

Jun 06, 2025
Abstract:Sensor systems are extremely popular today and vulnerable to sensor data attacks. Due to possible devastating consequences, counteracting sensor data attacks is an extremely important topic, which has not seen sufficient study. This paper develops the first methods that accurately identify/eliminate only the problematic attacked sensor data presented to a sequence estimation/regression algorithm under a powerful attack model constructed based on known/observed attacks. The approach does not assume a known form for the statistical model of the sensor data, allowing data-driven and machine learning sequence estimation/regression algorithms to be protected. A simple protection approach for attackers not endowed with knowledge of the details of our protection approach is first developed, followed by additional processing for attacks based on protection system knowledge. In the cases tested for which it was designed, experimental results show that the simple approach achieves performance indistinguishable, to two decimal places, from that for an approach which knows which sensors are attacked. For cases where the attacker has knowledge of the protection approach, experimental results indicate the additional processing can be configured so that the worst-case degradation under the additional processing and a large number of sensors attacked can be made significantly smaller than the worst-case degradation of the simple approach, and close to an approach which knows which sensors are attacked, for the same number of attacked sensors with just a slight degradation under no attacks. Mathematical descriptions of the worst-case attacks are used to demonstrate the additional processing will provide similar advantages for cases for which we do not have numerical results. All the data-driven processing used in our approaches employ only unattacked training data.
Via
