Topic:Time Series Analysis
What is Time Series Analysis? Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Papers and Code
May 15, 2025
Abstract:The O-RAN architecture is transforming cellular networks by adopting RAN softwarization and disaggregation concepts to enable data-driven monitoring and control of the network. Such management is enabled by RICs, which facilitate near-real-time and non-real-time network control through xApps and rApps. However, they face limitations, including latency overhead in data exchange between the RAN and RIC, restricting real-time monitoring, and the inability to access user plain data due to privacy and security constraints, hindering use cases like beamforming and spectrum classification. In this paper, we leverage the dApps concept to enable real-time RF spectrum classification with LibIQ, a novel library for RF signals that facilitates efficient spectrum monitoring and signal classification by providing functionalities to read I/Q samples as time-series, create datasets and visualize time-series data through plots and spectrograms. Thanks to LibIQ, I/Q samples can be efficiently processed to detect external RF signals, which are subsequently classified using a CNN inside the library. To achieve accurate spectrum analysis, we created an extensive dataset of time-series-based I/Q samples, representing distinct signal types captured using a custom dApp running on a 5G deployment over the Colosseum network emulator and an OTA testbed. We evaluate our model by deploying LibIQ in heterogeneous scenarios with varying center frequencies, time windows, and external RF signals. In real-time analysis, the model classifies the processed I/Q samples, achieving an average accuracy of approximately 97.8\% in identifying signal types across all scenarios. We pledge to release both LibIQ and the dataset created as a publicly available framework upon acceptance.
* 6 pages, 5 figures, 2 tables
Via

May 19, 2025
Abstract:Surgical phase recognition from video is a technology that automatically classifies the progress of a surgical procedure and has a wide range of potential applications, including real-time surgical support, optimization of medical resources, training and skill assessment, and safety improvement. Recent advances in surgical phase recognition technology have focused primarily on Transform-based methods, although methods that extract spatial features from individual frames using a CNN and video features from the resulting time series of spatial features using time series modeling have shown high performance. However, there remains a paucity of research on training methods for CNNs employed for feature extraction or representation learning in surgical phase recognition. In this study, we propose a method for representation learning in surgical workflow analysis using a vision-language model (ReSW-VL). Our proposed method involves fine-tuning the image encoder of a CLIP (Convolutional Language Image Model) vision-language model using prompt learning for surgical phase recognition. The experimental results on three surgical phase recognition datasets demonstrate the effectiveness of the proposed method in comparison to conventional methods.
Via

May 23, 2025
Abstract:Deep learning models have significantly improved the ability to detect novelties in time series (TS) data. This success is attributed to their strong representation capabilities. However, due to the inherent variability in TS data, these models often struggle with generalization and robustness. To address this, a common approach is to perform Unsupervised Domain Adaptation, particularly Universal Domain Adaptation (UniDA), to handle domain shifts and emerging novel classes. While extensively studied in computer vision, UniDA remains underexplored for TS data. This work provides a comprehensive implementation and comparison of state-of-the-art TS backbones in a UniDA framework. We propose a reliable protocol to evaluate their robustness and generalization across different domains. The goal is to provide practitioners with a framework that can be easily extended to incorporate future advancements in UniDA and TS architectures. Our results highlight the critical influence of backbone selection in UniDA performance and enable a robustness analysis across various datasets and architectures.
Via

May 21, 2025
Abstract:Multivariable time series forecasting methods can integrate information from exogenous variables, leading to significant prediction accuracy gains. Transformer architecture has been widely applied in various time series forecasting models due to its ability to capture long-range sequential dependencies. However, a na\"ive application of transformers often struggles to effectively model complex relationships among variables over time. To mitigate against this, we propose a novel architecture, namely the Spectral Operator Neural Network (Sonnet). Sonnet applies learnable wavelet transformations to the input and incorporates spectral analysis using the Koopman operator. Its predictive skill relies on the Multivariable Coherence Attention (MVCA), an operation that leverages spectral coherence to model variable dependencies. Our empirical analysis shows that Sonnet yields the best performance on $34$ out of $47$ forecasting tasks with an average mean absolute error (MAE) reduction of $1.1\%$ against the most competitive baseline (different per task). We further show that MVCA -- when put in place of the na\"ive attention used in various deep learning models -- can remedy its deficiencies, reducing MAE by $10.7\%$ on average in the most challenging forecasting tasks.
Via

May 22, 2025
Abstract:The Earth's surface is subject to complex and dynamic processes, ranging from large-scale phenomena such as tectonic plate movements to localized changes associated with ecosystems, agriculture, or human activity. Satellite images enable global monitoring of these processes with extensive spatial and temporal coverage, offering advantages over in-situ methods. In particular, resulting satellite image time series (SITS) datasets contain valuable information. To handle their large volume and complexity, some recent works focus on the use of graph-based techniques that abandon the regular Euclidean structure of satellite data to work at an object level. Besides, graphs enable modelling spatial and temporal interactions between identified objects, which are crucial for pattern detection, classification and regression tasks. This paper is an effort to examine the integration of graph-based methods in spatio-temporal remote-sensing analysis. In particular, it aims to present a versatile graph-based pipeline to tackle SITS analysis. It focuses on the construction of spatio-temporal graphs from SITS and their application to downstream tasks. The paper includes a comprehensive review and two case studies, which highlight the potential of graph-based approaches for land cover mapping and water resource forecasting. It also discusses numerous perspectives to resolve current limitations and encourage future developments.
* This work has been submitted to the IEEE for possible publication
Via

May 07, 2025
Abstract:Ornamentations, embellishments, or microtonal inflections are essential to melodic expression across many musical traditions, adding depth, nuance, and emotional impact to performances. Recognizing ornamentations in singing voices is key to MIR, with potential applications in music pedagogy, singer identification, genre classification, and controlled singing voice generation. However, the lack of annotated datasets and specialized modeling approaches remains a major obstacle for progress in this research area. In this work, we introduce R\=aga Ornamentation Detection (ROD), a novel dataset comprising Indian classical music recordings curated by expert musicians. The dataset is annotated using a custom Human-in-the-Loop tool for six vocal ornaments marked as event-based labels. Using this dataset, we develop an ornamentation detection model based on deep time-series analysis, preserving ornament boundaries during the chunking of long audio recordings. We conduct experiments using different train-test configurations within the ROD dataset and also evaluate our approach on a separate, manually annotated dataset of Indian classical concert recordings. Our experimental results support the superior performance of our proposed approach over the baseline CRNN.
Via

May 16, 2025
Abstract:Time series forecasting plays a crucial role in various fields, and the methods based on frequency domain analysis have become an important branch. However, most existing studies focus on the design of elaborate model architectures and are often tailored for limited datasets, still lacking universality. Besides, the assumption of independent and identically distributed (IID) data also contradicts the strong correlation of the time domain labels. To address these issues, abandoning time domain supervision, we propose a purely frequency domain supervision approach named cross-dimensional frequency (X-Freq) loss. Specifically, based on a statistical phenomenon, we first prove that the information entropy of the time series is higher than its spectral entropy, which implies higher certainty in frequency domain and thus can provide better supervision. Secondly, the Fourier Transform and the Wavelet Transform are applied to the time dimension and the channel dimension of the time series respectively, to capture the long-term and short-term frequency variations as well as the spatial configuration features. Thirdly, the loss between predictions and targets is uniformly computed in the frequency domain. Moreover, we plug-and-play incorporate X-Freq into multiple advanced forecasting models and compare on 14 real-world datasets. The experimental results demonstrate that, without making any modification to the original architectures or hyperparameters, X-Freq can improve the forecasting performance by an average of 3.3% on long-term forecasting datasets and 27.7% on short-term ones, showcasing superior generality and practicality. The code will be released publicly.
Via

May 16, 2025
Abstract:We propose the Fourier Adaptive Lite Diffusion Architecture (FALDA), a novel probabilistic framework for time series forecasting. First, we introduce the Diffusion Model for Residual Regression (DMRR) framework, which unifies diffusion-based probabilistic regression methods. Within this framework, FALDA leverages Fourier-based decomposition to incorporate a component-specific architecture, enabling tailored modeling of individual temporal components. A conditional diffusion model is utilized to estimate the future noise term, while our proposed lightweight denoiser, DEMA (Decomposition MLP with AdaLN), conditions on the historical noise term to enhance denoising performance. Through mathematical analysis and empirical validation, we demonstrate that FALDA effectively reduces epistemic uncertainty, allowing probabilistic learning to primarily focus on aleatoric uncertainty. Experiments on six real-world benchmarks demonstrate that FALDA consistently outperforms existing probabilistic forecasting approaches across most datasets for long-term time series forecasting while achieving enhanced computational efficiency without compromising accuracy. Notably, FALDA also achieves superior overall performance compared to state-of-the-art (SOTA) point forecasting approaches, with improvements of up to 9%.
Via

May 18, 2025
Abstract:With Large language models (LLMs) becoming increasingly prevalent in various applications, the need for interpreting their predictions has become a critical challenge. As LLMs vary in architecture and some are closed-sourced, model-agnostic techniques show great promise without requiring access to the model's internal parameters. However, existing model-agnostic techniques need to invoke LLMs many times to gain sufficient samples for generating faithful explanations, which leads to high economic costs. In this paper, we show that it is practical to generate faithful explanations for large-scale LLMs by sampling from some budget-friendly models through a series of empirical studies. Moreover, we show that such proxy explanations also perform well on downstream tasks. Our analysis provides a new paradigm of model-agnostic explanation methods for LLMs, by including information from budget-friendly models.
Via

May 13, 2025
Abstract:State-space models (SSMs), particularly the Mamba architecture, have emerged as powerful alternatives to Transformers for sequence modeling, offering linear-time complexity and competitive performance across diverse tasks. However, their large parameter counts pose significant challenges for deployment in resource-constrained environments. We propose a novel unstructured pruning framework tailored for Mamba models that achieves up to 70\% parameter reduction while retaining over 95\% of the original performance. Our approach integrates three key innovations: (1) a gradient-aware magnitude pruning technique that combines weight magnitude and gradient information to identify less critical parameters, (2) an iterative pruning schedule that gradually increases sparsity to maintain model stability, and (3) a global pruning strategy that optimizes parameter allocation across the entire model. Through extensive experiments on WikiText-103, Long Range Arena, and ETT time-series benchmarks, we demonstrate significant efficiency gains with minimal performance degradation. Our analysis of pruning effects on Mamba's components reveals critical insights into the architecture's redundancy and robustness, enabling practical deployment in resource-constrained settings while broadening Mamba's applicability.
Via
