Abstract:Lunar surface operations impose stringent requirements on wireless communication systems, including autonomy, robustness to disruption, and the ability to adapt to environmental and mission-driven context. While Space-O-RAN provides a distributed orchestration model aligned with 3GPP standards, its decision logic is limited to static policies and lacks semantic integration. We propose a novel extension incorporating a semantic agentic layer enabled by the Model Context Protocol (MCP) and Agent-to-Agent (A2A) communication protocols, allowing context-aware decision making across real-time, near-real-time, and non-real-time control layers. Distributed cognitive agents deployed in rovers, landers, and lunar base stations implement wireless-aware coordination strategies, including delay-adaptive reasoning and bandwidth-aware semantic compression, while interacting with multiple MCP servers to reason over telemetry, locomotion planning, and mission constraints.
Abstract:The application of small-factor, 5G-enabled Unmanned Aerial Vehicles (UAVs) has recently gained significant interest in various aerial and Industry 4.0 applications. However, ensuring reliable, high-throughput, and low-latency 5G communication in aerial applications remains a critical and underexplored problem. This paper presents the 5th generation (5G) Aero, a compact UAV optimized for 5G connectivity, aimed at fulfilling stringent 3rd Generation Partnership Project (3GPP) requirements. We conduct a set of experiments in an indoor environment, evaluating the UAV's ability to establish high-throughput, low-latency communications in both Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) conditions. Our findings demonstrate that the 5G Aero meets the required 3GPP standards for Command and Control (C2) packets latency in both LoS and NLoS, and video latency in LoS communications and it maintains acceptable latency levels for video transmission in NLoS conditions. Additionally, we show that the 5G module installed on the UAV introduces a negligible 1% decrease in flight time, showing that 5G technologies can be integrated into commercial off-the-shelf UAVs with minimal impact on battery lifetime. This paper contributes to the literature by demonstrating the practical capabilities of current 5G networks to support advanced UAV operations in telecommunications, offering insights into potential enhancements and optimizations for UAV performance in 5G networks
Abstract:In this work, we propose and evaluate the performance of a 5th generation (5G) New Radio (NR) bistatic Integrated Sensing and Communication (ISaC) system. Unlike the full-duplex monostatic ISaC systems, the bistatic approach enables sensing in the current cellular networks without significantly modifying the transceiver design. The sensing utilizes data channels, such as the Physical Uplink Shared Channel (PUSCH), which carries information on the air interface. We provide the maximum likelihood estimator for the delay and Doppler parameters and derive a lower bound on the Mean Square Error (MSE) for a single target scenario. Link-level simulations show that it is possible to achieve significant throughput while accurately estimating the sensing parameters with PUSCH. Moreover, the results reveal an interesting tradeoff between the number of reference symbols, sensing performance, and throughput in the proposed 5G NR bistatic ISaC system.
Abstract:The O-RAN architecture is transforming cellular networks by adopting RAN softwarization and disaggregation concepts to enable data-driven monitoring and control of the network. Such management is enabled by RICs, which facilitate near-real-time and non-real-time network control through xApps and rApps. However, they face limitations, including latency overhead in data exchange between the RAN and RIC, restricting real-time monitoring, and the inability to access user plain data due to privacy and security constraints, hindering use cases like beamforming and spectrum classification. In this paper, we leverage the dApps concept to enable real-time RF spectrum classification with LibIQ, a novel library for RF signals that facilitates efficient spectrum monitoring and signal classification by providing functionalities to read I/Q samples as time-series, create datasets and visualize time-series data through plots and spectrograms. Thanks to LibIQ, I/Q samples can be efficiently processed to detect external RF signals, which are subsequently classified using a CNN inside the library. To achieve accurate spectrum analysis, we created an extensive dataset of time-series-based I/Q samples, representing distinct signal types captured using a custom dApp running on a 5G deployment over the Colosseum network emulator and an OTA testbed. We evaluate our model by deploying LibIQ in heterogeneous scenarios with varying center frequencies, time windows, and external RF signals. In real-time analysis, the model classifies the processed I/Q samples, achieving an average accuracy of approximately 97.8\% in identifying signal types across all scenarios. We pledge to release both LibIQ and the dataset created as a publicly available framework upon acceptance.
Abstract:This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
Abstract:Reconfigurable Intelligent Surfaces (RISs) pose as a transformative technology to revolutionize the cellular architecture of Next Generation (NextG) Radio Access Networks (RANs). Previous studies have demonstrated the capabilities of RISs in optimizing wireless propagation, achieving high spectral efficiency, and improving resource utilization. At the same time, the transition to softwarized, disaggregated, and virtualized architectures, such as those being standardized by the O-RAN ALLIANCE, enables the vision of a reconfigurable Open RAN. In this work, we aim to integrate these technologies by studying how different resource allocation policies enhance the performance of RIS-assisted Open RANs. We perform a comparative analysis among various network configurations and show how proper network optimization can enhance the performance across the Enhanced Mobile Broadband (eMBB) and Ultra Reliable and Low Latency Communications (URLLC) network slices, achieving up to ~34% throughput improvement. Furthermore, leveraging the capabilities of OpenRAN Gym, we deploy an xApp on Colosseum, the world's largest wireless system emulator with hardware-in-the-loop, to control the Base Station (BS)'s scheduling policy. Experimental results demonstrate that RIS-assisted topologies achieve high resource efficiency and low latency, regardless of the BS's scheduling policy.
Abstract:Non-terrestrial networks (NTNs) are essential for ubiquitous connectivity, providing coverage in remote and underserved areas. However, since NTNs are currently operated independently, they face challenges such as isolation, limited scalability, and high operational costs. Integrating satellite constellations with terrestrial networks offers a way to address these limitations while enabling adaptive and cost-efficient connectivity through the application of Artificial Intelligence (AI) models. This paper introduces Space-O-RAN, a framework that extends Open Radio Access Network (RAN) principles to NTNs. It employs hierarchical closed-loop control with distributed Space RAN Intelligent Controllers (Space-RICs) to dynamically manage and optimize operations across both domains. To enable adaptive resource allocation and network orchestration, the proposed architecture integrates real-time satellite optimization and control with AI-driven management and digital twin (DT) modeling. It incorporates distributed Space Applications (sApps) and dApps to ensure robust performance in in highly dynamic orbital environments. A core feature is dynamic link-interface mapping, which allows network functions to adapt to specific application requirements and changing link conditions using all physical links on the satellite. Simulation results evaluate its feasibility by analyzing latency constraints across different NTN link types, demonstrating that intra-cluster coordination operates within viable signaling delay bounds, while offloading non-real-time tasks to ground infrastructure enhances scalability toward sixth-generation (6G) networks.
Abstract:Reconfigurable Intelligent Surfaces (RISs) are a promising technique for enhancing the performance of Next Generation (NextG) wireless communication systems in terms of both spectral and energy efficiency, as well as resource utilization. However, current RIS research has primarily focused on theoretical modeling and Physical (PHY) layer considerations only. Full protocol stack emulation and accurate modeling of the propagation characteristics of the wireless channel are necessary for studying the benefits introduced by RIS technology across various spectrum bands and use-cases. In this paper, we propose, for the first time: (i) accurate PHY layer RIS-enabled channel modeling through Geometry-Based Stochastic Models (GBSMs), leveraging the QUAsi Deterministic RadIo channel GenerAtor (QuaDRiGa) open-source statistical ray-tracer; (ii) optimized resource allocation with RISs by comprehensively studying energy efficiency and power control on different portions of the spectrum through a single-leader multiple-followers Stackelberg game theoretical approach; (iii) full-stack emulation and performance evaluation of RIS-assisted channels with SCOPE/srsRAN for Enhanced Mobile Broadband (eMBB) and Ultra Reliable and Low Latency Communications (URLLC) applications in the worlds largest emulator of wireless systems with hardware-in-the-loop, namely Colosseum. Our findings indicate (i) the significant power savings in terms of energy efficiency achieved with RIS-assisted topologies, especially in the millimeter wave (mmWave) band; and (ii) the benefits introduced for Sub-6 GHz band User Equipments (UEs), where the deployment of a relatively small RIS (e.g., in the order of 100 RIS elements) can result in decreased levels of latency for URLLC services in resource-constrained environments.
Abstract:5G and beyond cellular systems embrace the disaggregation of Radio Access Network (RAN) components, exemplified by the evolution of the fronthual (FH) connection between cellular baseband and radio unit equipment. Crucially, synchronization over the FH is pivotal for reliable 5G services. In recent years, there has been a push to move these links to an Ethernet-based packet network topology, leveraging existing standards and ongoing research for Time-Sensitive Networking (TSN). However, TSN standards, such as Precision Time Protocol (PTP), focus on performance with little to no concern for security. This increases the exposure of the open FH to security risks. Attacks targeting synchronization mechanisms pose significant threats, potentially disrupting 5G networks and impairing connectivity. In this paper, we demonstrate the impact of successful spoofing and replay attacks against PTP synchronization. We show how a spoofing attack is able to cause a production-ready O-RAN and 5G-compliant private cellular base station to catastrophically fail within 2 seconds of the attack, necessitating manual intervention to restore full network operations. To counter this, we design a Machine Learning (ML)-based monitoring solution capable of detecting various malicious attacks with over 97.5% accuracy.
Abstract:The development of 6G wireless technologies is rapidly advancing, with the 3rd Generation Partnership Project (3GPP) entering the pre-standardization phase and aiming to deliver the first specifications by 2028. This paper explores the OpenAirInterface (OAI) project, an open-source initiative that plays a crucial role in the evolution of 5G and the future 6G networks. OAI provides a comprehensive implementation of 3GPP and O-RAN compliant networks, including Radio Access Network (RAN), Core Network (CN), and software-defined User Equipment (UE) components. The paper details the history and evolution of OAI, its licensing model, and the various projects under its umbrella, such as RAN, the CN, as well as the Operations, Administration and Maintenance (OAM) projects. It also highlights the development methodology, Continuous Integration/Continuous Delivery (CI/CD) processes, and end-to-end systems powered by OAI. Furthermore, the paper discusses the potential of OAI for 6G research, focusing on spectrum, reflective intelligent surfaces, and Artificial Intelligence (AI)/Machine Learning (ML) integration. The open-source approach of OAI is emphasized as essential for tackling the challenges of 6G, fostering community collaboration, and driving innovation in next-generation wireless technologies.