Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
May 08, 2025
Abstract:The concept of sharpness has been successfully applied to traditional architectures like MLPs and CNNs to predict their generalization. For transformers, however, recent work reported weak correlation between flatness and generalization. We argue that existing sharpness measures fail for transformers, because they have much richer symmetries in their attention mechanism that induce directions in parameter space along which the network or its loss remain identical. We posit that sharpness must account fully for these symmetries, and thus we redefine it on a quotient manifold that results from quotienting out the transformer symmetries, thereby removing their ambiguities. Leveraging tools from Riemannian geometry, we propose a fully general notion of sharpness, in terms of a geodesic ball on the symmetry-corrected quotient manifold. In practice, we need to resort to approximating the geodesics. Doing so up to first order yields existing adaptive sharpness measures, and we demonstrate that including higher-order terms is crucial to recover correlation with generalization. We present results on diagonal networks with synthetic data, and show that our geodesic sharpness reveals strong correlation for real-world transformers on both text and image classification tasks.
Via

May 13, 2025
Abstract:In this work, we introduce metrics to evaluate the use of simplified time series in the context of interpretability of a TSC - a Time Series Classifier. Such simplifications are important because time series data, in contrast to text and image data, are not intuitively understandable to humans. These metrics are related to the complexity of the simplifications - how many segments they contain - and to their loyalty - how likely they are to maintain the classification of the original time series. We employ these metrics to evaluate four distinct simplification algorithms, across several TSC algorithms and across datasets of varying characteristics, from seasonal or stationary to short or long. Our findings suggest that using simplifications for interpretability of TSC is much better than using the original time series, particularly when the time series are seasonal, non-stationary and/or with low entropy.
Via

May 12, 2025
Abstract:Learning to associate audio with textual descriptions is valuable for a range of tasks, including pretraining, zero-shot classification, audio retrieval, audio captioning, and text-conditioned audio generation. Existing contrastive language-audio pretrained models are typically trained using global, clip-level descriptions, which provide only weak temporal supervision. We hypothesize that CLAP-like language-audio models - particularly, if they are expected to produce frame-level embeddings - can benefit from a stronger temporal supervision. To confirm our hypothesis, we curate a novel dataset of approximately 12,000 audio recordings from Freesound, each annotated with single-sentence free-text descriptions linked to a specific temporal segment in an audio recording. We use large language models to clean these annotations by removing references to non-audible events, transcribed speech, typos, and annotator language bias. We further propose a frame-wise contrastive training strategy that learns to align text descriptions with temporal regions in an audio recording and demonstrate that our model has better temporal text-audio alignment abilities compared to models trained only on global captions when evaluated on the AudioSet Strong benchmark. The dataset and our source code are available on Zenodo and GitHub, respectively.
* submitted to the IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA), 2025. Dataset (Zenodo):
https://zenodo.org/records/15379789, Implementation (GitHub):
https://github.com/OptimusPrimus/tacos
Via

May 21, 2025
Abstract:Existing AI-generated text detection methods heavily depend on large annotated datasets and external threshold tuning, restricting interpretability, adaptability, and zero-shot effectiveness. To address these limitations, we propose AGENT-X, a zero-shot multi-agent framework informed by classical rhetoric and systemic functional linguistics. Specifically, we organize detection guidelines into semantic, stylistic, and structural dimensions, each independently evaluated by specialized linguistic agents that provide explicit reasoning and robust calibrated confidence via semantic steering. A meta agent integrates these assessments through confidence-aware aggregation, enabling threshold-free, interpretable classification. Additionally, an adaptive Mixture-of-Agent router dynamically selects guidelines based on inferred textual characteristics. Experiments on diverse datasets demonstrate that AGENT-X substantially surpasses state-of-the-art supervised and zero-shot approaches in accuracy, interpretability, and generalization.
Via

May 22, 2025
Abstract:Remote Sensing Image-Text Retrieval (RSITR) plays a critical role in geographic information interpretation, disaster monitoring, and urban planning by establishing semantic associations between image and textual descriptions. Existing Parameter-Efficient Fine-Tuning (PEFT) methods for Vision-and-Language Pre-training (VLP) models typically adopt symmetric adapter structures for exploring cross-modal correlations. However, the strong discriminative nature of text modality may dominate the optimization process and inhibits image representation learning. The nonnegligible imbalanced cross-modal optimization remains a bottleneck to enhancing the model performance. To address this issue, this study proposes a Representation Discrepancy Bridging (RDB) method for the RSITR task. On the one hand, a Cross-Modal Asymmetric Adapter (CMAA) is designed to enable modality-specific optimization and improve feature alignment. The CMAA comprises a Visual Enhancement Adapter (VEA) and a Text Semantic Adapter (TSA). VEA mines fine-grained image features by Differential Attention (DA) mechanism, while TSA identifies key textual semantics through Hierarchical Attention (HA) mechanism. On the other hand, this study extends the traditional single-task retrieval framework to a dual-task optimization framework and develops a Dual-Task Consistency Loss (DTCL). The DTCL improves cross-modal alignment robustness through an adaptive weighted combination of cross-modal, classification, and exponential moving average consistency constraints. Experiments on RSICD and RSITMD datasets show that the proposed RDB method achieves a 6%-11% improvement in mR metrics compared to state-of-the-art PEFT methods and a 1.15%-2% improvement over the full fine-tuned GeoRSCLIP model.
Via

May 23, 2025
Abstract:Vision-language models (VLMs) have recently been integrated into multiple instance learning (MIL) frameworks to address the challenge of few-shot, weakly supervised classification of whole slide images (WSIs). A key trend involves leveraging multi-scale information to better represent hierarchical tissue structures. However, existing methods often face two key limitations: (1) insufficient modeling of interactions within the same modalities across scales (e.g., 5x and 20x) and (2) inadequate alignment between visual and textual modalities on the same scale. To address these gaps, we propose HiVE-MIL, a hierarchical vision-language framework that constructs a unified graph consisting of (1) parent-child links between coarse (5x) and fine (20x) visual/textual nodes to capture hierarchical relationships, and (2) heterogeneous intra-scale edges linking visual and textual nodes on the same scale. To further enhance semantic consistency, HiVE-MIL incorporates a two-stage, text-guided dynamic filtering mechanism that removes weakly correlated patch-text pairs, and introduces a hierarchical contrastive loss to align textual semantics across scales. Extensive experiments on TCGA breast, lung, and kidney cancer datasets demonstrate that HiVE-MIL consistently outperforms both traditional MIL and recent VLM-based MIL approaches, achieving gains of up to 4.1% in macro F1 under 16-shot settings. Our results demonstrate the value of jointly modeling hierarchical structure and multimodal alignment for efficient and scalable learning from limited pathology data. The code is available at https://github.com/bryanwong17/HiVE-MIL
Via

May 16, 2025
Abstract:This paper presents an end-to-end suite for multilingual information extraction and processing from image-based documents. The system uses Optical Character Recognition (Tesseract) to extract text in languages such as English, Hindi, and Tamil, and then a pipeline involving large language model APIs (Gemini) for cross-lingual translation, abstractive summarization, and re-translation into a target language. Additional modules add sentiment analysis (TensorFlow), topic classification (Transformers), and date extraction (Regex) for better document comprehension. Made available in an accessible Gradio interface, the current research shows a real-world application of libraries, models, and APIs to close the language gap and enhance access to information in image media across different linguistic environments
* 8 pages, 7 figures, direct arXiv submission
Via

May 21, 2025
Abstract:Large Language Models (LLMs) encounter significant challenges in long-sequence inference due to computational inefficiency and redundant processing, driving interest in context compression techniques. Existing methods often rely on token importance to perform hard local compression or encode context into latent representations for soft global compression. However, the uneven distribution of textual content relevance and the diversity of demands for user instructions mean these approaches frequently lead to the loss of potentially valuable information. To address this, we propose $\textbf{Hy}$brid $\textbf{Co}$ntext $\textbf{Co}$mpression (HyCo$_2$) for LLMs, which integrates both global and local perspectives to guide context compression while retaining both the essential semantics and critical details for task completion. Specifically, we employ a hybrid adapter to refine global semantics with the global view, based on the observation that different adapters excel at different tasks. Then we incorporate a classification layer that assigns a retention probability to each context token based on the local view, determining whether it should be retained or discarded. To foster a balanced integration of global and local compression, we introduce auxiliary paraphrasing and completion pretraining before instruction tuning. This promotes a synergistic integration that emphasizes instruction-relevant information while preserving essential local details, ultimately balancing local and global information retention in context compression. Experiments show that our HyCo$_2$ method significantly enhances long-text reasoning while reducing token usage. It improves the performance of various LLM series by an average of 13.1\% across seven knowledge-intensive QA benchmarks. Moreover, HyCo$_2$ matches the performance of uncompressed methods while reducing token consumption by 88.8\%.
Via

May 18, 2025
Abstract:We introduce the first method for translating text embeddings from one vector space to another without any paired data, encoders, or predefined sets of matches. Our unsupervised approach translates any embedding to and from a universal latent representation (i.e., a universal semantic structure conjectured by the Platonic Representation Hypothesis). Our translations achieve high cosine similarity across model pairs with different architectures, parameter counts, and training datasets. The ability to translate unknown embeddings into a different space while preserving their geometry has serious implications for the security of vector databases. An adversary with access only to embedding vectors can extract sensitive information about the underlying documents, sufficient for classification and attribute inference.
Via

May 20, 2025
Abstract:Fine-grained sentiment analysis (FGSA) aims to identify sentiment polarity toward specific aspects within a text, enabling more precise opinion mining in domains such as product reviews and social media. However, traditional FGSA approaches often require task-specific architectures and extensive annotated data, limiting their generalization and scalability. To address these challenges, we propose PL-FGSA, a unified prompt learning-based framework implemented using the MindSpore platform, which integrates prompt design with a lightweight TextCNN backbone. Our method reformulates FGSA as a multi-task prompt-augmented generation problem, jointly tackling aspect extraction, sentiment classification, and causal explanation in a unified paradigm. By leveraging prompt-based guidance, PL-FGSA enhances interpretability and achieves strong performance under both full-data and low-resource conditions. Experiments on three benchmark datasets-SST-2, SemEval-2014 Task 4, and MAMS-demonstrate that our model consistently outperforms traditional fine-tuning methods and achieves F1-scores of 0.922, 0.694, and 0.597, respectively. These results validate the effectiveness of prompt-based generalization and highlight the practical value of PL-FGSA for real-world sentiment analysis tasks.
Via
