Abstract:Remote Sensing Image-Text Retrieval (RSITR) plays a critical role in geographic information interpretation, disaster monitoring, and urban planning by establishing semantic associations between image and textual descriptions. Existing Parameter-Efficient Fine-Tuning (PEFT) methods for Vision-and-Language Pre-training (VLP) models typically adopt symmetric adapter structures for exploring cross-modal correlations. However, the strong discriminative nature of text modality may dominate the optimization process and inhibits image representation learning. The nonnegligible imbalanced cross-modal optimization remains a bottleneck to enhancing the model performance. To address this issue, this study proposes a Representation Discrepancy Bridging (RDB) method for the RSITR task. On the one hand, a Cross-Modal Asymmetric Adapter (CMAA) is designed to enable modality-specific optimization and improve feature alignment. The CMAA comprises a Visual Enhancement Adapter (VEA) and a Text Semantic Adapter (TSA). VEA mines fine-grained image features by Differential Attention (DA) mechanism, while TSA identifies key textual semantics through Hierarchical Attention (HA) mechanism. On the other hand, this study extends the traditional single-task retrieval framework to a dual-task optimization framework and develops a Dual-Task Consistency Loss (DTCL). The DTCL improves cross-modal alignment robustness through an adaptive weighted combination of cross-modal, classification, and exponential moving average consistency constraints. Experiments on RSICD and RSITMD datasets show that the proposed RDB method achieves a 6%-11% improvement in mR metrics compared to state-of-the-art PEFT methods and a 1.15%-2% improvement over the full fine-tuned GeoRSCLIP model.
Abstract:Accurate food volume estimation is crucial for medical nutrition management and health monitoring applications, but current food volume estimation methods are often limited by mononuclear data, leveraging single-purpose hardware such as 3D scanners, gathering sensor-oriented information such as depth information, or relying on camera calibration using a reference object. In this paper, we present VolE, a novel framework that leverages mobile device-driven 3D reconstruction to estimate food volume. VolE captures images and camera locations in free motion to generate precise 3D models, thanks to AR-capable mobile devices. To achieve real-world measurement, VolE is a reference- and depth-free framework that leverages food video segmentation for food mask generation. We also introduce a new food dataset encompassing the challenging scenarios absent in the previous benchmarks. Our experiments demonstrate that VolE outperforms the existing volume estimation techniques across multiple datasets by achieving 2.22 % MAPE, highlighting its superior performance in food volume estimation.
Abstract:Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models.
Abstract:While representation learning and generative modeling seek to understand visual data, unifying both domains remains unexplored. Recent Unified Self-Supervised Learning (SSL) methods have started to bridge the gap between both paradigms. However, they rely solely on semantic token reconstruction, which requires an external tokenizer during training -- introducing a significant overhead. In this work, we introduce Sorcen, a novel unified SSL framework, incorporating a synergic Contrastive-Reconstruction objective. Our Contrastive objective, "Echo Contrast", leverages the generative capabilities of Sorcen, eliminating the need for additional image crops or augmentations during training. Sorcen "generates" an echo sample in the semantic token space, forming the contrastive positive pair. Sorcen operates exclusively on precomputed tokens, eliminating the need for an online token transformation during training, thereby significantly reducing computational overhead. Extensive experiments on ImageNet-1k demonstrate that Sorcen outperforms the previous Unified SSL SoTA by 0.4%, 1.48 FID, 1.76%, and 1.53% on linear probing, unconditional image generation, few-shot learning, and transfer learning, respectively, while being 60.8% more efficient. Additionally, Sorcen surpasses previous single-crop MIM SoTA in linear probing and achieves SoTA performance in unconditional image generation, highlighting significant improvements and breakthroughs in Unified SSL models.
Abstract:A crucial requirement for machine learning algorithms is not only to perform well, but also to show robustness and adaptability when encountering novel scenarios. One way to achieve these characteristics is to endow the deep learning models with the ability to detect out-of-distribution (OOD) data, i.e. data that belong to distributions different from the one used during their training. It is even a more complicated situation, when these data usually are multi-label. In this paper, we propose an approach based on evidential deep learning in order to meet these challenges applied to visual recognition problems. More concretely, we designed a CNN architecture that uses a Beta Evidential Neural Network to compute both the likelihood and the predictive uncertainty of the samples. Based on these results, we propose afterwards two new uncertainty-based scores for OOD data detection: (i) OOD - score Max, based on the maximum evidence; and (ii) OOD score - Sum, which considers the evidence from all outputs. Extensive experiments have been carried out to validate the proposed approach using three widely-used datasets: PASCAL-VOC, MS-COCO and NUS-WIDE, demonstrating its outperformance over several State-of-the-Art methods.
Abstract:Neurodegenerative diseases (NDDs) are complex and lack effective treatment due to their poorly understood mechanism. The increasingly used data analysis from Single nucleus RNA Sequencing (snRNA-seq) allows to explore transcriptomic events at a single cell level, yet face challenges in interpreting the mechanisms underlying a disease. On the other hand, Neural Network (NN) models can handle complex data to offer insights but can be seen as black boxes with poor interpretability. In this context, explainable AI (XAI) emerges as a solution that could help to understand disease-associated mechanisms when combined with efficient NN models. However, limited research explores XAI in single-cell data. In this work, we implement a method for identifying disease-related genes and the mechanistic explanation of disease progression based on NN model combined with SHAP. We analyze available Huntington's disease (HD) data to identify both HD-altered genes and mechanisms by adding Gene Set Enrichment Analysis (GSEA) comparing two methods, differential gene expression analysis (DGE) and NN combined with SHAP approach. Our results show that DGE and SHAP approaches offer both common and differential sets of altered genes and pathways, reinforcing the usefulness of XAI methods for a broader perspective of disease.
Abstract:Hepatocellular carcinoma (HCC) is a common type of liver cancer whose early-stage diagnosis is a common challenge, mainly due to the manual assessment of hematoxylin and eosin-stained whole slide images, which is a time-consuming process and may lead to variability in decision-making. For accurate detection of HCC, we propose a hybrid deep learning-based architecture that uses transfer learning to extract the features from pre-trained convolutional neural network (CNN) models and a classifier made up of a sequence of fully connected layers. This study uses a publicly available The Cancer Genome Atlas Hepatocellular Carcinoma (TCGA-LIHC)database (n=491) for model development and database of Kasturba Gandhi Medical College (KMC), India for validation. The pre-processing step involves patch extraction, colour normalization, and augmentation that results in 3920 patches for the TCGA dataset. The developed hybrid deep neural network consisting of a CNN-based pre-trained feature extractor and a customized artificial neural network-based classifier is trained using five-fold cross-validation. For this study, eight different state-of-the-art models are trained and tested as feature extractors for the proposed hybrid model. The proposed hybrid model with ResNet50-based feature extractor provided the sensitivity, specificity, F1-score, accuracy, and AUC of 100.00%, 100.00%, 100.00%, 100.00%, and 1.00, respectively on the TCGA database. On the KMC database, EfficientNetb3 resulted in the optimal choice of the feature extractor giving sensitivity, specificity, F1-score, accuracy, and AUC of 96.97, 98.85, 96.71, 96.71, and 0.99, respectively. The proposed hybrid models showed improvement in accuracy of 2% and 4% over the pre-trained models in TCGA-LIHC and KMC databases.
Abstract:Food segmentation, including in videos, is vital for addressing real-world health, agriculture, and food biotechnology issues. Current limitations lead to inaccurate nutritional analysis, inefficient crop management, and suboptimal food processing, impacting food security and public health. Improving segmentation techniques can enhance dietary assessments, agricultural productivity, and the food production process. This study introduces the development of a robust framework for high-quality, near-real-time segmentation and tracking of food items in videos, using minimal hardware resources. We present FoodMem, a novel framework designed to segment food items from video sequences of 360-degree unbounded scenes. FoodMem can consistently generate masks of food portions in a video sequence, overcoming the limitations of existing semantic segmentation models, such as flickering and prohibitive inference speeds in video processing contexts. To address these issues, FoodMem leverages a two-phase solution: a transformer segmentation phase to create initial segmentation masks and a memory-based tracking phase to monitor food masks in complex scenes. Our framework outperforms current state-of-the-art food segmentation models, yielding superior performance across various conditions, such as camera angles, lighting, reflections, scene complexity, and food diversity. This results in reduced segmentation noise, elimination of artifacts, and completion of missing segments. Here, we also introduce a new annotated food dataset encompassing challenging scenarios absent in previous benchmarks. Extensive experiments conducted on Nutrition5k and Vegetables & Fruits datasets demonstrate that FoodMem enhances the state-of-the-art by 2.5% mean average precision in food video segmentation and is 58 x faster on average.
Abstract:The increasing interest in computer vision applications for nutrition and dietary monitoring has led to the development of advanced 3D reconstruction techniques for food items. However, the scarcity of high-quality data and limited collaboration between industry and academia have constrained progress in this field. Building on recent advancements in 3D reconstruction, we host the MetaFood Workshop and its challenge for Physically Informed 3D Food Reconstruction. This challenge focuses on reconstructing volume-accurate 3D models of food items from 2D images, using a visible checkerboard as a size reference. Participants were tasked with reconstructing 3D models for 20 selected food items of varying difficulty levels: easy, medium, and hard. The easy level provides 200 images, the medium level provides 30 images, and the hard level provides only 1 image for reconstruction. In total, 16 teams submitted results in the final testing phase. The solutions developed in this challenge achieved promising results in 3D food reconstruction, with significant potential for improving portion estimation for dietary assessment and nutritional monitoring. More details about this workshop challenge and access to the dataset can be found at https://sites.google.com/view/cvpr-metafood-2024.
Abstract:In the realm of self-supervised learning (SSL), conventional wisdom has gravitated towards the utility of massive, general domain datasets for pretraining robust backbones. In this paper, we challenge this idea by exploring if it is possible to bridge the scale between general-domain datasets and (traditionally smaller) domain-specific datasets to reduce the current performance gap. More specifically, we propose Precision at Scale (PaS), a novel method for the autonomous creation of domain-specific datasets on-demand. The modularity of the PaS pipeline enables leveraging state-of-the-art foundational and generative models to create a collection of images of any given size belonging to any given domain with minimal human intervention. Extensive analysis in two complex domains, proves the superiority of PaS datasets over existing traditional domain-specific datasets in terms of diversity, scale, and effectiveness in training visual transformers and convolutional neural networks. Most notably, we prove that automatically generated domain-specific datasets lead to better pretraining than large-scale supervised datasets such as ImageNet-1k and ImageNet-21k. Concretely, models trained on domain-specific datasets constructed by PaS pipeline, beat ImageNet-1k pretrained backbones by at least 12% in all the considered domains and classification tasks and lead to better food domain performance than supervised ImageNet-21k pretrain while being 12 times smaller. Code repository: https://github.com/jesusmolrdv/Precision-at-Scale/