Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Object Detection": models, code, and papers

Differentiating Objects by Motion: Joint Detection and Tracking of Small Flying Objects

May 15, 2018
Ryota Yoshihashi, Tu Tuan Trinh, Rei Kawakami, Shaodi You, Makoto Iida, Takeshi Naemura

While generic object detection has achieved large improvements with rich feature hierarchies from deep nets, detecting small objects with poor visual cues remains challenging. Motion cues from multiple frames may be more informative for detecting such hard-to-distinguish objects in each frame. However, how to encode discriminative motion patterns, such as deformations and pose changes that characterize objects, has remained an open question. To learn them and thereby realize small object detection, we present a neural model called the Recurrent Correlational Network, where detection and tracking are jointly performed over a multi-frame representation learned through a single, trainable, and end-to-end network. A convolutional long short-term memory network is utilized for learning informative appearance change for detection, while learned representation is shared in tracking for enhancing its performance. In experiments with datasets containing images of scenes with small flying objects, such as birds and unmanned aerial vehicles, the proposed method yielded consistent improvements in detection performance over deep single-frame detectors and existing motion-based detectors. Furthermore, our network performs as well as state-of-the-art generic object trackers when it was evaluated as a tracker on the bird dataset.

* 10 pages, 8 figures 
  

Seq-NMS for Video Object Detection

Aug 22, 2016
Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mohammad Babaeizadeh, Honghui Shi, Jianan Li, Shuicheng Yan, Thomas S. Huang

Video object detection is challenging because objects that are easily detected in one frame may be difficult to detect in another frame within the same clip. Recently, there have been major advances for doing object detection in a single image. These methods typically contain three phases: (i) object proposal generation (ii) object classification and (iii) post-processing. We propose a modification of the post-processing phase that uses high-scoring object detections from nearby frames to boost scores of weaker detections within the same clip. We show that our method obtains superior results to state-of-the-art single image object detection techniques. Our method placed 3rd in the video object detection (VID) task of the ImageNet Large Scale Visual Recognition Challenge 2015 (ILSVRC2015).

* Technical Report for Imagenet VID Competition 2015 
  

Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection

Feb 19, 2018
Alexander Wong, Mohammad Javad Shafiee, Francis Li, Brendan Chwyl

Object detection is a major challenge in computer vision, involving both object classification and object localization within a scene. While deep neural networks have been shown in recent years to yield very powerful techniques for tackling the challenge of object detection, one of the biggest challenges with enabling such object detection networks for widespread deployment on embedded devices is high computational and memory requirements. Recently, there has been an increasing focus in exploring small deep neural network architectures for object detection that are more suitable for embedded devices, such as Tiny YOLO and SqueezeDet. Inspired by the efficiency of the Fire microarchitecture introduced in SqueezeNet and the object detection performance of the single-shot detection macroarchitecture introduced in SSD, this paper introduces Tiny SSD, a single-shot detection deep convolutional neural network for real-time embedded object detection that is composed of a highly optimized, non-uniform Fire sub-network stack and a non-uniform sub-network stack of highly optimized SSD-based auxiliary convolutional feature layers designed specifically to minimize model size while maintaining object detection performance. The resulting Tiny SSD possess a model size of 2.3MB (~26X smaller than Tiny YOLO) while still achieving an mAP of 61.3% on VOC 2007 (~4.2% higher than Tiny YOLO). These experimental results show that very small deep neural network architectures can be designed for real-time object detection that are well-suited for embedded scenarios.

* 7 pages 
  

Transformer Transforms Salient Object Detection and Camouflaged Object Detection

Apr 20, 2021
Yuxin Mao, Jing Zhang, Zhexiong Wan, Yuchao Dai, Aixuan Li, Yunqiu Lv, Xinyu Tian, Deng-Ping Fan, Nick Barnes

The transformer networks, which originate from machine translation, are particularly good at modeling long-range dependencies within a long sequence. Currently, the transformer networks are making revolutionary progress in various vision tasks ranging from high-level classification tasks to low-level dense prediction tasks. In this paper, we conduct research on applying the transformer networks for salient object detection (SOD). Specifically, we adopt the dense transformer backbone for fully supervised RGB image based SOD, RGB-D image pair based SOD, and weakly supervised SOD via scribble supervision. As an extension, we also apply our fully supervised model to the task of camouflaged object detection (COD) for camouflaged object segmentation. For the fully supervised models, we define the dense transformer backbone as feature encoder, and design a very simple decoder to produce a one channel saliency map (or camouflage map for the COD task). For the weakly supervised model, as there exists no structure information in the scribble annotation, we first adopt the recent proposed Gated-CRF loss to effectively model the pair-wise relationships for accurate model prediction. Then, we introduce self-supervised learning strategy to push the model to produce scale-invariant predictions, which is proven effective for weakly supervised models and models trained on small training datasets. Extensive experimental results on various SOD and COD tasks (fully supervised RGB image based SOD, fully supervised RGB-D image pair based SOD, weakly supervised SOD via scribble supervision, and fully supervised RGB image based COD) illustrate that transformer networks can transform salient object detection and camouflaged object detection, leading to new benchmarks for each related task.

* Technical report, 15 pages, 18 figures 
  

On the Distribution of Salient Objects in Web Images and its Influence on Salient Object Detection

Jan 10, 2015
Boris Schauerte, Rainer Stiefelhagen

It has become apparent that a Gaussian center bias can serve as an important prior for visual saliency detection, which has been demonstrated for predicting human eye fixations and salient object detection. Tseng et al. have shown that the photographer's tendency to place interesting objects in the center is a likely cause for the center bias of eye fixations. We investigate the influence of the photographer's center bias on salient object detection, extending our previous work. We show that the centroid locations of salient objects in photographs of Achanta and Liu's data set in fact correlate strongly with a Gaussian model. This is an important insight, because it provides an empirical motivation and justification for the integration of such a center bias in salient object detection algorithms and helps to understand why Gaussian models are so effective. To assess the influence of the center bias on salient object detection, we integrate an explicit Gaussian center bias model into two state-of-the-art salient object detection algorithms. This way, first, we quantify the influence of the Gaussian center bias on pixel- and segment-based salient object detection. Second, we improve the performance in terms of F1 score, Fb score, area under the recall-precision curve, area under the receiver operating characteristic curve, and hit-rate on the well-known data set by Achanta and Liu. Third, by debiasing Cheng et al.'s region contrast model, we exemplarily demonstrate that implicit center biases are partially responsible for the outstanding performance of state-of-the-art algorithms. Last but not least, as a result of debiasing Cheng et al.'s algorithm, we introduce a non-biased salient object detection method, which is of interest for applications in which the image data is not likely to have a photographer's center bias (e.g., image data of surveillance cameras or autonomous robots).

* PLoS ONE 10 (2015) 
  

Detecting Object States vs Detecting Objects: A New Dataset and a Quantitative Experimental Study

Dec 15, 2021
Filippos Gouidis, Theodoris Patkos, Antonis Argyros, Dimitris Plexousakis

The detection of object states in images (State Detection - SD) is a problem of both theoretical and practical importance and it is tightly interwoven with other important computer vision problems, such as action recognition and affordance detection. It is also highly relevant to any entity that needs to reason and act in dynamic domains, such as robotic systems and intelligent agents. Despite its importance, up to now, the research on this problem has been limited. In this paper, we attempt a systematic study of the SD problem. First, we introduce the Object State Detection Dataset (OSDD), a new publicly available dataset consisting of more than 19,000 annotations for 18 object categories and 9 state classes. Second, using a standard deep learning framework used for Object Detection (OD), we conduct a number of appropriately designed experiments, towards an in-depth study of the behavior of the SD problem. This study enables the setup of a baseline on the performance of SD, as well as its relative performance in comparison to OD, in a variety of scenarios. Overall, the experimental outcomes confirm that SD is harder than OD and that tailored SD methods need to be developed for addressing effectively this significant problem.

  

Bridging Saliency Detection to Weakly Supervised Object Detection Based on Self-paced Curriculum Learning

Mar 03, 2017
Dingwen Zhang, Deyu Meng, Long Zhao, Junwei Han

Weakly-supervised object detection (WOD) is a challenging problems in computer vision. The key problem is to simultaneously infer the exact object locations in the training images and train the object detectors, given only the training images with weak image-level labels. Intuitively, by simulating the selective attention mechanism of human visual system, saliency detection technique can select attractive objects in scenes and thus is a potential way to provide useful priors for WOD. However, the way to adopt saliency detection in WOD is not trivial since the detected saliency region might be possibly highly ambiguous in complex cases. To this end, this paper first comprehensively analyzes the challenges in applying saliency detection to WOD. Then, we make one of the earliest efforts to bridge saliency detection to WOD via the self-paced curriculum learning, which can guide the learning procedure to gradually achieve faithful knowledge of multi-class objects from easy to hard. The experimental results demonstrate that the proposed approach can successfully bridge saliency detection and WOD tasks and achieve the state-of-the-art object detection results under the weak supervision.

* Has published in IJCAI 16 
  

Uncertainty-aware Joint Salient Object and Camouflaged Object Detection

Apr 06, 2021
Aixuan Li, Jing Zhang, Yunqiu Lv, Bowen Liu, Tong Zhang, Yuchao Dai

Visual salient object detection (SOD) aims at finding the salient object(s) that attract human attention, while camouflaged object detection (COD) on the contrary intends to discover the camouflaged object(s) that hidden in the surrounding. In this paper, we propose a paradigm of leveraging the contradictory information to enhance the detection ability of both salient object detection and camouflaged object detection. We start by exploiting the easy positive samples in the COD dataset to serve as hard positive samples in the SOD task to improve the robustness of the SOD model. Then, we introduce a similarity measure module to explicitly model the contradicting attributes of these two tasks. Furthermore, considering the uncertainty of labeling in both tasks' datasets, we propose an adversarial learning network to achieve both higher order similarity measure and network confidence estimation. Experimental results on benchmark datasets demonstrate that our solution leads to state-of-the-art (SOTA) performance for both tasks.

* Accepted to IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021. Aixuan Li and Jing Zhang contributed equally 
  

Detecting Temporally Consistent Objects in Videos through Object Class Label Propagation

Jan 20, 2016
Subarna Tripathi, Serge Belongie, Youngbae Hwang, Truong Nguyen

Object proposals for detecting moving or static video objects need to address issues such as speed, memory complexity and temporal consistency. We propose an efficient Video Object Proposal (VOP) generation method and show its efficacy in learning a better video object detector. A deep-learning based video object detector learned using the proposed VOP achieves state-of-the-art detection performance on the Youtube-Objects dataset. We further propose a clustering of VOPs which can efficiently be used for detecting objects in video in a streaming fashion. As opposed to applying per-frame convolutional neural network (CNN) based object detection, our proposed method called Objects in Video Enabler thRough LAbel Propagation (OVERLAP) needs to classify only a small fraction of all candidate proposals in every video frame through streaming clustering of object proposals and class-label propagation. Source code will be made available soon.

* Accepted for publication in WACV 2016 
  

Object Instance Mining for Weakly Supervised Object Detection

Feb 04, 2020
Chenhao Lin, Siwen Wang, Dongqi Xu, Yu Lu, Wayne Zhang

Weakly supervised object detection (WSOD) using only image-level annotations has attracted growing attention over the past few years. Existing approaches using multiple instance learning easily fall into local optima, because such mechanism tends to learn from the most discriminative object in an image for each category. Therefore, these methods suffer from missing object instances which degrade the performance of WSOD. To address this problem, this paper introduces an end-to-end object instance mining (OIM) framework for weakly supervised object detection. OIM attempts to detect all possible object instances existing in each image by introducing information propagation on the spatial and appearance graphs, without any additional annotations. During the iterative learning process, the less discriminative object instances from the same class can be gradually detected and utilized for training. In addition, we design an object instance reweighted loss to learn larger portion of each object instance to further improve the performance. The experimental results on two publicly available databases, VOC 2007 and 2012, demonstrate the efficacy of proposed approach.

  
<<
1
2
3
4
5
6
7
8
>>