What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Jul 09, 2025
Abstract:Edge detection (ED) remains a fundamental task in computer vision, yet its performance is often hindered by the ambiguous nature of non-edge pixels near object boundaries. The widely adopted Weighted Binary Cross-Entropy (WBCE) loss treats all non-edge pixels uniformly, overlooking the structural nuances around edges and often resulting in blurred predictions. In this paper, we propose the Edge-Boundary-Texture (EBT) loss, a novel objective that explicitly divides pixels into three categories, edge, boundary, and texture, and assigns each a distinct supervisory weight. This tri-class formulation enables more structured learning by guiding the model to focus on both edge precision and contextual boundary localization. We theoretically show that the EBT loss generalizes the WBCE loss, with the latter becoming a limit case. Extensive experiments across multiple benchmarks demonstrate the superiority of the EBT loss both quantitatively and perceptually. Furthermore, the consistent use of unified hyperparameters across all models and datasets, along with robustness to their moderate variations, indicates that the EBT loss requires minimal fine-tuning and is easily deployable in practice.
* 10 pages
Via

Jul 09, 2025
Abstract:Our Robust, Explainable Autonomy for Scientific Icy Moon Operations (REASIMO) effort contributes to NASA's Concepts for Ocean worlds Life Detection Technology (COLDTech) program, which explores science platform technologies for ocean worlds such as Europa and Enceladus. Ocean world missions pose significant operational challenges. These include long communication lags, limited power, and lifetime limitations caused by radiation damage and hostile conditions. Given these operational limitations, onboard autonomy will be vital for future Ocean world missions. Besides the management of nominal lander operations, onboard autonomy must react appropriately in the event of anomalies. Traditional spacecraft rely on a transition into 'safe-mode' in which non-essential components and subsystems are powered off to preserve safety and maintain communication with Earth. For a severely time-limited Ocean world mission, resolutions to these anomalies that can be executed without Earth-in-the-loop communication and associated delays are paramount for completion of the mission objectives and science goals. To address these challenges, the REASIMO effort aims to demonstrate a robust level of AI-assisted autonomy for such missions, including the ability to detect and recover from anomalies, and to perform missions based on pre-trained behaviors rather than hard-coded, predetermined logic like all prior space missions. We developed an AI-assisted, personality-driven, intelligent framework for control of an Ocean world mission by combining a mix of advanced technologies. To demonstrate the capabilities of the framework, we perform tests of autonomous sampling operations on a lander-manipulator testbed at the NASA Jet Propulsion Laboratory, approximating possible surface conditions such a mission might encounter.
Via

Jul 09, 2025
Abstract:Category-level object pose estimation, which predicts the pose of objects within a known category without prior knowledge of individual instances, is essential in applications like warehouse automation and manufacturing. Existing methods relying on RGB images or point cloud data often struggle with object occlusion and generalization across different instances and categories. This paper proposes a multimodal-based keypoint learning framework (MK-Pose) that integrates RGB images, point clouds, and category-level textual descriptions. The model uses a self-supervised keypoint detection module enhanced with attention-based query generation, soft heatmap matching and graph-based relational modeling. Additionally, a graph-enhanced feature fusion module is designed to integrate local geometric information and global context. MK-Pose is evaluated on CAMERA25 and REAL275 dataset, and is further tested for cross-dataset capability on HouseCat6D dataset. The results demonstrate that MK-Pose outperforms existing state-of-the-art methods in both IoU and average precision without shape priors. Codes will be released at \href{https://github.com/yangyifanYYF/MK-Pose}{https://github.com/yangyifanYYF/MK-Pose}.
Via

Jul 08, 2025
Abstract:We present results from the SNAD VIII Workshop, during which we conducted the first systematic anomaly search in the ZTF fields also observed by LSSTComCam during Rubin Scientific Pipeline commissioning. Using the PineForest active anomaly detection algorithm, we analysed four selected fields (two galactic and two extragalactic) and visually inspected 400 candidates. As a result, we discovered six previously uncatalogued variable stars, including RS~CVn, BY Draconis, ellipsoidal, and solar-type variables, and refined classifications and periods for six known objects. These results demonstrate the effectiveness of the SNAD anomaly detection pipeline and provide a preview of the discovery potential in the upcoming LSST data.
* 11 pages, 4 figures
Via

Jul 08, 2025
Abstract:This paper presents our submission to Task 1, Subjectivity Detection, of the CheckThat! Lab at CLEF 2025. We investigate the effectiveness of transfer-learning and stylistic data augmentation to improve classification of subjective and objective sentences in English news text. Our approach contrasts fine-tuning of pre-trained encoders and transfer-learning of fine-tuned transformer on related tasks. We also introduce a controlled augmentation pipeline using GPT-4o to generate paraphrases in predefined subjectivity styles. To ensure label and style consistency, we employ the same model to correct and refine the generated samples. Results show that transfer-learning of specified encoders outperforms fine-tuning general-purpose ones, and that carefully curated augmentation significantly enhances model robustness, especially in detecting subjective content. Our official submission placed us $16^{th}$ of 24 participants. Overall, our findings underscore the value of combining encoder specialization with label-consistent augmentation for improved subjectivity detection. Our code is available at https://github.com/dsgt-arc/checkthat-2025-subject.
Via

Jul 03, 2025
Abstract:Monocular 3D object detection (M3OD) has long faced challenges due to data scarcity caused by high annotation costs and inherent 2D-to-3D ambiguity. Although various weakly supervised methods and pseudo-labeling methods have been proposed to address these issues, they are mostly limited by domain-specific learning or rely solely on shape information from a single observation. In this paper, we propose a novel pseudo-labeling framework that uses only video data and is more robust to occlusion, without requiring a multi-view setup, additional sensors, camera poses, or domain-specific training. Specifically, we explore a technique for aggregating the pseudo-LiDARs of both static and dynamic objects across temporally adjacent frames using object point tracking, enabling 3D attribute extraction in scenarios where 3D data acquisition is infeasible. Extensive experiments demonstrate that our method ensures reliable accuracy and strong scalability, making it a practical and effective solution for M3OD.
* 18 pages, 16 figures
Via

Jul 03, 2025
Abstract:The growing demand for oriented object detection (OOD) across various domains has driven significant research in this area. However, the high cost of dataset annotation remains a major concern. Current mainstream OOD algorithms can be mainly categorized into three types: (1) fully supervised methods using complete oriented bounding box (OBB) annotations, (2) semi-supervised methods using partial OBB annotations, and (3) weakly supervised methods using weak annotations such as horizontal boxes or points. However, these algorithms inevitably increase the cost of models in terms of annotation speed or annotation cost. To address this issue, we propose:(1) the first Partial Weakly-Supervised Oriented Object Detection (PWOOD) framework based on partially weak annotations (horizontal boxes or single points), which can efficiently leverage large amounts of unlabeled data, significantly outperforming weakly supervised algorithms trained with partially weak annotations, also offers a lower cost solution; (2) Orientation-and-Scale-aware Student (OS-Student) model capable of learning orientation and scale information with only a small amount of orientation-agnostic or scale-agnostic weak annotations; and (3) Class-Agnostic Pseudo-Label Filtering strategy (CPF) to reduce the model's sensitivity to static filtering thresholds. Comprehensive experiments on DOTA-v1.0/v1.5/v2.0 and DIOR datasets demonstrate that our PWOOD framework performs comparably to, or even surpasses, traditional semi-supervised algorithms.
* 10 pages, 5 figures, 4 tables, source code:
https://github.com/VisionXLab/PWOOD
Via

Jul 03, 2025
Abstract:Pedestrian detection in RGB images is a key task in pedestrian safety, as the most common sensor in autonomous vehicles and advanced driver assistance systems is the RGB camera. A challenge in RGB pedestrian detection, that does not appear to have large public datasets, is low-light conditions. As a solution, in this research, we propose an automated infrared-RGB labeling pipeline. The proposed pipeline consists of 1) Infrared detection, where a fine-tuned model for infrared pedestrian detection is used 2) Label transfer process from the infrared detections to their RGB counterparts 3) Training object detection models using the generated labels for low-light RGB pedestrian detection. The research was performed using the KAIST dataset. For the evaluation, object detection models were trained on the generated autolabels and ground truth labels. When compared on a previously unseen image sequence, the results showed that the models trained on generated labels outperformed the ones trained on ground-truth labels in 6 out of 9 cases for the mAP@50 and mAP@50-95 metrics. The source code for this research is available at https://github.com/BouzoulasDimitrios/IR-RGB-Automated-LowLight-Pedestrian-Labeling
Via

Jul 03, 2025
Abstract:Different from general object detection, moving infrared small target detection faces huge challenges due to tiny target size and weak background contrast.Currently, most existing methods are fully-supervised, heavily relying on a large number of manual target-wise annotations. However, manually annotating video sequences is often expensive and time-consuming, especially for low-quality infrared frame images. Inspired by general object detection, non-fully supervised strategies ($e.g.$, weakly supervised) are believed to be potential in reducing annotation requirements. To break through traditional fully-supervised frameworks, as the first exploration work, this paper proposes a new weakly-supervised contrastive learning (WeCoL) scheme, only requires simple target quantity prompts during model training.Specifically, in our scheme, based on the pretrained segment anything model (SAM), a potential target mining strategy is designed to integrate target activation maps and multi-frame energy accumulation.Besides, contrastive learning is adopted to further improve the reliability of pseudo-labels, by calculating the similarity between positive and negative samples in feature subspace.Moreover, we propose a long-short term motion-aware learning scheme to simultaneously model the local motion patterns and global motion trajectory of small targets.The extensive experiments on two public datasets (DAUB and ITSDT-15K) verify that our weakly-supervised scheme could often outperform early fully-supervised methods. Even, its performance could reach over 90\% of state-of-the-art (SOTA) fully-supervised ones.
Via

Jul 03, 2025
Abstract:Robots usually slow down for canning to detect objects while moving. Additionally, the robot's camera is configured with a low framerate to track the velocity of the detection algorithms. This would be constrained while executing tasks and exploring, making robots increase the task execution time. AMD has developed the Vitis-AI framework to deploy detection algorithms into FPGAs. However, this tool does not fully use the FPGAs' PL. In this work, we use the FINN architecture to deploy three ANNs, MobileNet v1 with 4-bit quantisation, CNV with 2-bit quantisation, and CNV with 1-bit quantisation (BNN), inside an FPGA's PL. The models were trained on the RG2C dataset. This is a self-acquired dataset released in open access. MobileNet v1 performed better, reaching a success rate of 98 % and an inference speed of 6611 FPS. In this work, we proved that we can use FPGAs to speed up ANNs and make them suitable for attention mechanisms.
* Submitted to ROBOT'2025
Via
