Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Jun 17, 2025
Abstract:Facial micro-expression recognition (MER) is a challenging problem, due to transient and subtle micro-expression (ME) actions. Most existing methods depend on hand-crafted features, key frames like onset, apex, and offset frames, or deep networks limited by small-scale and low-diversity datasets. In this paper, we propose an end-to-end micro-action-aware deep learning framework with advantages from transformer, graph convolution, and vanilla convolution. In particular, we propose a novel F5C block composed of fully-connected convolution and channel correspondence convolution to directly extract local-global features from a sequence of raw frames, without the prior knowledge of key frames. The transformer-style fully-connected convolution is proposed to extract local features while maintaining global receptive fields, and the graph-style channel correspondence convolution is introduced to model the correlations among feature patterns. Moreover, MER, optical flow estimation, and facial landmark detection are jointly trained by sharing the local-global features. The two latter tasks contribute to capturing facial subtle action information for MER, which can alleviate the impact of insufficient training data. Extensive experiments demonstrate that our framework (i) outperforms the state-of-the-art MER methods on CASME II, SAMM, and SMIC benchmarks, (ii) works well for optical flow estimation and facial landmark detection, and (iii) can capture facial subtle muscle actions in local regions associated with MEs. The code is available at https://github.com/CYF-cuber/MOL.
* This paper has been accepted by IEEE Transactions on Pattern Analysis
and Machine Intelligence
Via

Jun 10, 2025
Abstract:Most existing structured pruning methods for Large Language Models (LLMs) require substantial computational and data resources for retraining to reestablish the corrupted correlations, making them prohibitively expensive. To address this, we propose a pruning framework for LLMs called Orthogonal decomposition and Linear Calibration (Olica), which eliminates the need for retraining. A key observation is that the multi-head attention (MHA) layer depends on two types of matrix products. By treating these matrix products as unified entities and applying principal component analysis (PCA), we extract the most important information to compress LLMs without sacrificing accuracy or disrupting their original structure. Consequently, retraining becomes unnecessary. A fast decomposition method is devised, reducing the complexity of PCA by a factor of the square of the number of attention heads. Additionally, to mitigate error accumulation problem caused by pruning the feed-forward network (FFN) layer, we introduce a linear calibration method to reconstruct the residual errors of pruned layers using low-rank matrices. By leveraging singular value decomposition (SVD) on the solution of the least-squares problem, these matrices are obtained without requiring retraining. Extensive experiments show that the proposed Olica is efficient in terms of data usage, GPU memory, and running time, while delivering superior performance across multiple benchmarks.
* Accepted to ICML 2025
Via

Jun 11, 2025
Abstract:As function approximators, deep neural networks have served as an effective tool to represent various signal types. Recent approaches utilize multi-layer perceptrons (MLPs) to learn a nonlinear mapping from a coordinate to its corresponding signal, facilitating the learning of continuous neural representations from discrete data points. Despite notable successes in learning diverse signal types, coordinate-based MLPs often face issues of overfitting and limited generalizability beyond the training region, resulting in subpar extrapolation performance. This study addresses scenarios where the underlying true signals exhibit periodic properties, either spatially or temporally. We propose a novel network architecture, which extracts periodic patterns from measurements and leverages this information to represent the signal, thereby enhancing generalization and improving extrapolation performance. We demonstrate the efficacy of the proposed method through comprehensive experiments, including the learning of the periodic solutions for differential equations, and time series imputation (interpolation) and forecasting (extrapolation) on real-world datasets.
Via

Jun 12, 2025
Abstract:The rapid proliferation of online video content necessitates effective video summarization techniques. Traditional methods, often relying on a single modality (typically visual), struggle to capture the full semantic richness of videos. This paper introduces MF2Summ, a novel video summarization model based on multimodal content understanding, integrating both visual and auditory information. MF2Summ employs a five-stage process: feature extraction, cross-modal attention interaction, feature fusion, segment prediction, and key shot selection. Visual features are extracted using a pre-trained GoogLeNet model, while auditory features are derived using SoundNet. The core of our fusion mechanism involves a cross-modal Transformer and an alignment-guided self-attention Transformer, designed to effectively model inter-modal dependencies and temporal correspondences. Segment importance, location, and center-ness are predicted, followed by key shot selection using Non-Maximum Suppression (NMS) and the Kernel Temporal Segmentation (KTS) algorithm. Experimental results on the SumMe and TVSum datasets demonstrate that MF2Summ achieves competitive performance, notably improving F1-scores by 1.9\% and 0.6\% respectively over the DSNet model, and performing favorably against other state-of-the-art methods.
Via

Jun 11, 2025
Abstract:Deep neural networks face several challenges in hyperspectral image classification, including high-dimensional data, sparse distribution of ground objects, and spectral redundancy, which often lead to classification overfitting and limited generalization capability. To more effectively extract and fuse spatial context with fine spectral information in hyperspectral image (HSI) classification, this paper proposes a novel network architecture called STNet. The core advantage of STNet stems from the dual innovative design of its Spatial-Spectral Transformer module: first, the fundamental explicit decoupling of spatial and spectral attention ensures targeted capture of key information in HSI; second, two functionally distinct gating mechanisms perform intelligent regulation at both the fusion level of attention flows (adaptive attention fusion gating) and the internal level of feature transformation (GFFN). This characteristic demonstrates superior feature extraction and fusion capabilities compared to traditional convolutional neural networks, while reducing overfitting risks in small-sample and high-noise scenarios. STNet enhances model representation capability without increasing network depth or width. The proposed method demonstrates superior performance on IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification approaches.
* arXiv admin note: substantial text overlap with arXiv:2504.15155,
arXiv:2504.13045, arXiv:2503.23472
Via

Jun 17, 2025
Abstract:Interactive segmentation enables users to extract binary masks of target objects through simple interactions such as clicks, scribbles, and boxes. However, existing methods often support only limited interaction forms and struggle to capture fine details. In this paper, we revisit the classical coarse-to-fine design of FocalClick and introduce significant extensions. Inspired by its multi-stage strategy, we propose a novel pipeline, FocalClick-XL, to address these challenges simultaneously. Following the emerging trend of large-scale pretraining, we decompose interactive segmentation into meta-tasks that capture different levels of information -- context, object, and detail -- assigning a dedicated subnet to each level.This decomposition allows each subnet to undergo scaled pretraining with independent data and supervision, maximizing its effectiveness. To enhance flexibility, we share context- and detail-level information across different interaction forms as common knowledge while introducing a prompting layer at the object level to encode specific interaction types. As a result, FocalClick-XL achieves state-of-the-art performance on click-based benchmarks and demonstrates remarkable adaptability to diverse interaction formats, including boxes, scribbles, and coarse masks. Beyond binary mask generation, it is also capable of predicting alpha mattes with fine-grained details, making it a versatile and powerful tool for interactive segmentation.
Via

Jun 14, 2025
Abstract:Recent advances in audio-text large language models (LLMs) have opened new possibilities for music understanding and generation. However, existing benchmarks are limited in scope, often relying on simplified tasks or multi-choice evaluations that fail to reflect the complexity of real-world music analysis. We reinterpret a broad range of traditional MIR annotations as instruction-following formats and introduce CMI-Bench, a comprehensive music instruction following benchmark designed to evaluate audio-text LLMs on a diverse set of music information retrieval (MIR) tasks. These include genre classification, emotion regression, emotion tagging, instrument classification, pitch estimation, key detection, lyrics transcription, melody extraction, vocal technique recognition, instrument performance technique detection, music tagging, music captioning, and (down)beat tracking: reflecting core challenges in MIR research. Unlike previous benchmarks, CMI-Bench adopts standardized evaluation metrics consistent with previous state-of-the-art MIR models, ensuring direct comparability with supervised approaches. We provide an evaluation toolkit supporting all open-source audio-textual LLMs, including LTU, Qwen-audio, SALMONN, MusiLingo, etc. Experiment results reveal significant performance gaps between LLMs and supervised models, along with their culture, chronological and gender bias, highlighting the potential and limitations of current models in addressing MIR tasks. CMI-Bench establishes a unified foundation for evaluating music instruction following, driving progress in music-aware LLMs.
* Accepted by ISMIR 2025
Via

Jun 14, 2025
Abstract:Per-garment virtual try-on methods collect garment-specific datasets and train networks tailored to each garment to achieve superior results. However, these approaches often struggle with loose-fitting garments due to two key limitations: (1) They rely on human body semantic maps to align garments with the body, but these maps become unreliable when body contours are obscured by loose-fitting garments, resulting in degraded outcomes; (2) They train garment synthesis networks on a per-frame basis without utilizing temporal information, leading to noticeable jittering artifacts. To address these challenges, we propose a two-stage approach for robust semantic map estimation. First, we extract a garment-invariant representation from the raw input image. This representation is then passed through an auxiliary network to estimate the semantic map. This enhances the robustness of semantic map estimation under loose-fitting garments during garment-specific dataset generation. Furthermore, we introduce a recurrent garment synthesis framework that incorporates temporal dependencies to improve frame-to-frame coherence while maintaining real-time performance. We conducted qualitative and quantitative evaluations to demonstrate that our method outperforms existing approaches in both image quality and temporal coherence. Ablation studies further validate the effectiveness of the garment-invariant representation and the recurrent synthesis framework.
Via

Jun 16, 2025
Abstract:Large Language Models (LLMs) excel at many NLP tasks, but struggle with multi-hop reasoning and factual consistency, limiting their effectiveness on knowledge-intensive tasks like complex question answering (QA). Linking Knowledge Graphs (KG) and LLMs has shown promising results, but LLMs generally lack the ability to reason efficiently over graph-structured information. To tackle this problem, we propose a novel retrieval approach that integrates textual knowledge graphs into the LLM reasoning process via query decomposition. Our method decomposes complex questions into sub-questions, retrieves relevant textual subgraphs, and composes a question-specific knowledge graph to guide answer generation. For that, we use a weighted similarity function that focuses on both the complex question and the generated subquestions to extract a relevant subgraph, which allows efficient and precise retrieval for complex questions and improves the performance of LLMs on multi-hop QA tasks. This structured reasoning pipeline enhances factual grounding and interpretability while leveraging the generative strengths of LLMs. We evaluate our method on standard multi-hop QA benchmarks and show that it achieves comparable or superior performance to competitive existing methods, using smaller models and fewer LLM calls.
Via

Jun 10, 2025
Abstract:Repeat consumption, such as repurchasing items and relistening songs, is a common scenario in daily life. To model repeat consumption, the repeat-aware recommendation has been proposed to predict which item will be re-interacted based on the user-item interactions. In this paper, we investigate various inherent characteristics to enhance the repeat-aware recommendation. Specifically, we explore these characteristics from two aspects: one is from the temporal aspect where we consider the time interval relationship in the user behavior sequence; the other is from the sequential aspect where we consider the sequential-level relationship in the user behavior sequence. And our intuition is that both the temporal pattern and sequential pattern will reflect users' intentions of repeat consumption. By utilizing these two patterns, a novel model called Temporal and Sequential repeat-aware Recommendation(TSRec for short) is proposed to enhance repeat-aware recommendation. TSRec has three main components: 1) User-specific Temporal Representation Module (UTRM), which encodes and extracts user historical repeat temporal information. 2)Item-specific Temporal Representation Module (ITRM), which incorporates item time interval information as side information to alleviate the data sparsity problem of user repeat behavior sequence. 3) Sequential Repeat-Aware Module (SRAM), which represents the similarity between the user's current and the last repeat sequences. Extensive experimental results on three public benchmarks demonstrate the superiority of TSRec over state-of-the-art methods. The implementation code is available https://anonymous.4open.science/r/TSRec-2306/.
Via
