Information extraction is the process of automatically extracting structured information from unstructured text data.
Information overload and misinformation create significant challenges in extracting meaningful narratives from large news collections. This paper defines the nascent field of Interactive Narrative Analytics (INA), which combines computational narrative extraction with interactive visual analytics to support sensemaking. INA approaches enable the interactive exploration of narrative structures through computational methods and visual interfaces that facilitate human interpretation. The field faces challenges in scalability, interactivity, knowledge integration, and evaluation standardization, yet offers promising opportunities across news analysis, intelligence, scientific literature exploration, and social media analysis. Through the combination of computational and human insight, INA addresses complex challenges in narrative sensemaking.
The automated extraction of structured questions from paper-based mathematics exams is fundamental to intelligent education, yet remains challenging in real-world settings due to severe visual noise. Existing benchmarks mainly focus on clean documents or generic layout analysis, overlooking both the structural integrity of mathematical problems and the ability of models to actively reject incomplete inputs. We introduce MathDoc, the first benchmark for document-level information extraction from authentic high school mathematics exam papers. MathDoc contains \textbf{3,609} carefully curated questions with real-world artifacts and explicitly includes unrecognizable samples to evaluate active refusal behavior. We propose a multi-dimensional evaluation framework covering stem accuracy, visual similarity, and refusal capability. Experiments on SOTA MLLMs, including Qwen3-VL and Gemini-2.5-Pro, show that although end-to-end models achieve strong extraction performance, they consistently fail to refuse illegible inputs, instead producing confident but invalid outputs. These results highlight a critical gap in current MLLMs and establish MathDoc as a benchmark for assessing model reliability under degraded document conditions. Our project repository is available at \href{https://github.com/winnk123/papers/tree/master}{GitHub repository}
Vision-Language Models (VLMs), particularly CLIP, have revolutionized anomaly detection by enabling zero-shot and few-shot defect identification without extensive labeled datasets. By learning aligned representations of images and text, VLMs facilitate anomaly classification and segmentation through natural language descriptions of normal and abnormal states, eliminating traditional requirements for task-specific training or defect examples. This project presents a comprehensive analysis of VLM-based approaches for anomaly classification (AC) and anomaly segmentation (AS). We systematically investigate key architectural paradigms including sliding window-based dense feature extraction (WinCLIP), multi-stage feature alignment with learnable projections (AprilLab framework), and compositional prompt ensemble strategies. Our analysis evaluates these methods across critical dimensions: feature extraction mechanisms, text-visual alignment strategies, prompt engineering techniques, zero-shot versus few-shot trade-offs, computational efficiency, and cross-domain generalization. Through rigorous experimentation on benchmarks such as MVTec AD and VisA, we compare classification accuracy, segmentation precision, and inference efficiency. The primary contribution is a foundational understanding of how and why VLMs succeed in anomaly detection, synthesizing practical insights for method selection and identifying current limitations. This work aims to facilitate informed adoption of VLM-based methods in industrial quality control and guide future research directions.
Graph-based methods have proven to be effective in capturing relationships among points for 3D point cloud analysis. However, these methods often suffer from suboptimal graph structures, particularly due to sparse connections at boundary points and noisy connections in junction areas. To address these challenges, we propose a novel method that integrates a graph smoothing module with an enhanced local geometry learning module. Specifically, we identify the limitations of conventional graph structures, particularly in handling boundary points and junction areas. In response, we introduce a graph smoothing module designed to optimize the graph structure and minimize the negative impact of unreliable sparse and noisy connections. Based on the optimized graph structure, we improve the feature extract function with local geometry information. These include shape features derived from adaptive geometric descriptors based on eigenvectors and distribution features obtained through cylindrical coordinate transformation. Experimental results on real-world datasets validate the effectiveness of our method in various point cloud learning tasks, i.e., classification, part segmentation, and semantic segmentation.
Glioblastoma, IDH-wildtype (GBM-IDHwt) is the most common malignant brain tumor. Histomorphology is a crucial component of the integrated diagnosis of GBM-IDHwt. Artificial intelligence (AI) methods have shown promise to extract additional prognostic information from histological whole-slide images (WSI) of hematoxylin and eosin-stained glioblastoma tissue. Here, we present an explainable AI-based method to support systematic interpretation of histomorphological features associated with survival. It combines an explainable multiple instance learning (MIL) architecture with a sparse autoencoder (SAE) to relate human-interpretable visual patterns of tissue to survival. The MIL architecture directly identifies prognosis-relevant image tiles and the SAE maps these tiles post-hoc to visual patterns. The MIL method was trained and evaluated using a new real-world dataset that comprised 720 GBM-IDHwt cases from three hospitals and four cancer registries in Germany. The SAE was trained using 1878 WSIs of glioblastoma from five independent public data collections. Despite the many factors influencing survival time, our method showed some ability to discriminate between patients living less than 180 days or more than 360 days solely based on histomorphology (AUC: 0.67; 95% CI: 0.63-0.72). Cox proportional hazards regression confirmed a significant difference in survival time between the predicted groups after adjustment for established prognostic factors (hazard ratio: 1.47; 95% CI: 1.26-1.72). Our method identified multiple interpretable visual patterns associated with survival. Three neuropathologists separately found that 21 of the 24 most strongly associated patterns could be clearly attributed to seven histomorphological categories. Necrosis and hemorrhage appeared to be associated with shorter survival while highly cellular tumor areas were associated with longer survival.
Language models used in retrieval-augmented settings must arbitrate between parametric knowledge stored in their weights and contextual information in the prompt. This work presents a mechanistic study of that choice by extracting an \emph{arbitration vector} from model activations on a curated dataset designed to disentangle (i) irrelevant contexts that elicit parametric recall and (ii) relevant but false contexts that elicit copying. The vector is computed as the residual-stream centroid difference between these regimes across 27 relations, and is injected as an additive intervention at selected layers and token spans to steer behavior in two directions: Copy$\rightarrow$Recall (suppressing context use) and Recall$\rightarrow$Copy (inducing the model to copy any token from the context). Experiments on two architectures (decoder-only and encoder/decoder) and two open-domain QA benchmarks show consistent behavior shifts under moderate scaling while monitoring accuracy and fluency. Mechanistic analyses of attention routing, MLP contributions, and layer-wise probability trajectories reveal an asymmetry: inducing copying is an easy ``reactivation'' process that can be triggered at different locations in the input, while restoring recall is a ``suppression'' process that is more fragile and strongly tied to object-token interventions.
Empathetic speech dialogue requires not only understanding linguistic content but also perceiving rich paralinguistic information such as prosody, tone, and emotional intensity for affective understandings. Existing speech-to-speech large language models either rely on ASR transcription or use encoders to extract latent representations, often weakening affective information and contextual coherence in multi-turn dialogues. To address this, we propose \textbf{ES4R}, a framework for speech-based empathetic response generation. Our core innovation lies in explicitly modeling structured affective context before speech encoding, rather than relying on implicit learning by the encoder or explicit emotion supervision. Specifically, we introduce a dual-level attention mechanism to capture turn-level affective states and dialogue-level affective dynamics. The resulting affective representations are then integrated with textual semantics through speech-guided cross-modal attention to generate empathetic responses. For speech output, we employ energy-based strategy selection and style fusion to achieve empathetic speech synthesis. ES4R consistently outperforms strong baselines in both automatic and human evaluations and remains robust across different LLM backbones.
Large language models (LLMs) exhibit impressive in-context learning (ICL) capabilities, yet the quality of their predictions is fundamentally limited by the few costly labeled demonstrations that can fit into a prompt. Meanwhile, there exist vast and continuously growing amounts of unlabeled data that may be closely related to the ICL task. How to utilize such unlabeled data to provably enhance the performance of ICL thus becomes an emerging fundamental question. In this work, we propose a novel augmented ICL framework, in which the prompt includes a small set of labeled examples alongside a block of unlabeled inputs. We focus on the multi-class linear classification setting and demonstrate that, with chain-of-thought (CoT) prompting, a multi-layer transformer can effectively emulate an expectation-maximization (EM) algorithm. This enables the transformer to implicitly extract useful information from both labeled and unlabeled data, leading to provable improvements in ICL accuracy. Moreover, we show that such a transformer can be trained via teacher forcing, with its parameters converging to the desired solution at a linear rate. Experiments demonstrate that the augmented ICL framework consistently outperforms conventional few-shot ICL, providing empirical support for our theoretical findings. To the best of our knowledge, this is the first theoretical study on the impact of unlabeled data on the ICL performance of transformers.
The scarcity of annotated datasets for clinical information extraction in non-English languages hinders the evaluation of large language model (LLM)-based methods developed primarily in English. In this study, we present the first comprehensive bilingual evaluation of LLMs for the clinical Relation Extraction (RE) task in both English and Turkish. To facilitate this evaluation, we introduce the first English-Turkish parallel clinical RE dataset, derived and carefully curated from the 2010 i2b2/VA relation classification corpus. We systematically assess a diverse set of prompting strategies, including multiple in-context learning (ICL) and Chain-of-Thought (CoT) approaches, and compare their performance to fine-tuned baselines such as PURE. Furthermore, we propose Relation-Aware Retrieval (RAR), a novel in-context example selection method based on contrastive learning, that is specifically designed to capture both sentence-level and relation-level semantics. Our results show that prompting-based LLM approaches consistently outperform traditional fine-tuned models. Moreover, evaluations for English performed better than their Turkish counterparts across all evaluated LLMs and prompting techniques. Among ICL methods, RAR achieves the highest performance, with Gemini 1.5 Flash reaching a micro-F1 score of 0.906 in English and 0.888 in Turkish. Performance further improves to 0.918 F1 in English when RAR is combined with a structured reasoning prompt using the DeepSeek-V3 model. These findings highlight the importance of high-quality demonstration retrieval and underscore the potential of advanced retrieval and prompting techniques to bridge resource gaps in clinical natural language processing.
In this paper, the CD-TWINSAFE is introduced, a V2I-based digital twin for Autonomous Vehicles. The proposed architecture is composed of two stacks running simultaneously, an on-board driving stack that includes a stereo camera for scene understanding, and a digital twin stack that runs an Unreal Engine 5 replica of the scene viewed by the camera as well as returning safety alerts to the cockpit. The on-board stack is implemented on the vehicle side including 2 main autonomous modules; localization and perception. The position and orientation of the ego vehicle are obtained using on-board sensors. Furthermore, the perception module is responsible for processing 20-fps images from stereo camera and understands the scene through two complementary pipelines. The pipeline are working on object detection and feature extraction including object velocity, yaw and the safety metrics time-to-collision and time-headway. The collected data form the driving stack are sent to the infrastructure side through the ROS-enabled architecture in the form of custom ROS2 messages and sent over UDP links that ride a 4G modem for V2I communication. The environment is monitored via the digital twin through the shared messages which update the information of the spawned ego vehicle and detected objects based on the real-time localization and perception data. Several tests with different driving scenarios to confirm the validity and real-time response of the proposed architecture.