Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Sep 16, 2025
Abstract:Target Speaker Extraction (TSE) is a critical challenge in cocktail party scenarios. While leveraging multiple modalities, such as voice, lip, face, and expression embeddings, can enhance performance, real-world applications often suffer from intermittent modality dropout. This paper presents a comprehensive study on the interactions and robustness of various multimodal fusion strategies under varying degrees of modality dropout. We build upon a state-of-the-art audio-visual speech enhancement system and integrate four distinct speaker identity cues: lip embeddings for synchronized contextual information, a voice speaker embedding extracted via cross-attention for acoustic consistency, a static face embedding for speaker identity, and a novel dynamic expression embedding for frame-wise emotional features. We systematically evaluate different combinations of these modalities under two key training regimes: zero dropout and 80% modality dropout. Extensive experiments demonstrate that while a full multimodal ensemble achieves optimal performance under ideal (zero dropout) conditions, its effectiveness diminishes significantly when test-time dropout occurs without prior exposure during training. Crucially, we show that training with a high (80%) modality dropout rate dramatically enhances model robustness, enabling the system to maintain superior performance even under severe test-time missing modalities. Our findings highlight that voice embeddings exhibit consistent robustness, while the proposed expression embedding provides valuable complementary information. This work underscores the importance of training strategies that account for real-world imperfection, moving beyond pure performance maximization to achieve practical reliability in multimodal speech enhancement systems.
Via

Sep 18, 2025
Abstract:Large models achieve strong performance on Vision-and-Language Navigation (VLN) tasks, but are costly to run in resource-limited environments. Token pruning offers appealing tradeoffs for efficiency with minimal performance loss by reducing model input size, but prior work overlooks VLN-specific challenges. For example, information loss from pruning can effectively increase computational cost due to longer walks. Thus, the inability to identify uninformative tokens undermines the supposed efficiency gains from pruning. To address this, we propose Navigation-Aware Pruning (NAP), which uses navigation-specific traits to simplify the pruning process by pre-filtering tokens into foreground and background. For example, image views are filtered based on whether the agent can navigate in that direction. We also extract navigation-relevant instructions using a Large Language Model. After filtering, we focus pruning on background tokens, minimizing information loss. To further help avoid increases in navigation length, we discourage backtracking by removing low-importance navigation nodes. Experiments on standard VLN benchmarks show NAP significantly outperforms prior work, preserving higher success rates while saving more than 50% FLOPS.
* Accepted to ACL 2024 Findings. Data and code to be released at
https://github.com/wdqin/VLN-NAP
Via

Sep 19, 2025
Abstract:Accurate abdominal multi-organ segmentation is critical for clinical applications. Although numerous deep learning-based automatic segmentation methods have been developed, they still struggle to segment small, irregular, or anatomically complex organs. Moreover, most current methods focus on spatial-domain analysis, often overlooking the synergistic potential of frequency-domain representations. To address these limitations, we propose a novel framework named FMD-TransUNet for precise abdominal multi-organ segmentation. It innovatively integrates the Multi-axis External Weight Block (MEWB) and the improved dual attention module (DA+) into the TransUNet framework. The MEWB extracts multi-axis frequency-domain features to capture both global anatomical structures and local boundary details, providing complementary information to spatial-domain representations. The DA+ block utilizes depthwise separable convolutions and incorporates spatial and channel attention mechanisms to enhance feature fusion, reduce redundant information, and narrow the semantic gap between the encoder and decoder. Experimental validation on the Synapse dataset shows that FMD-TransUNet outperforms other recent state-of-the-art methods, achieving an average DSC of 81.32\% and a HD of 16.35 mm across eight abdominal organs. Compared to the baseline model, the average DSC increased by 3.84\%, and the average HD decreased by 15.34 mm. These results demonstrate the effectiveness of FMD-TransUNet in improving the accuracy of abdominal multi-organ segmentation.
Via

Sep 19, 2025
Abstract:In large scale e-commerce marketplaces, duplicate product listings frequently cause consumer confusion and operational inefficiencies, degrading trust on the platform and increasing costs. Traditional keyword-based search methodologies falter in accurately identifying duplicates due to their reliance on exact textual matches, neglecting semantic similarities inherent in product titles. To address these challenges, we introduce a scalable, multimodal product deduplication designed specifically for the e-commerce domain. Our approach employs a domain-specific text model grounded in BERT architecture in conjunction with MaskedAutoEncoders for image representations. Both of these architectures are augmented with dimensionality reduction techniques to produce compact 128-dimensional embeddings without significant information loss. Complementing this, we also developed a novel decider model that leverages both text and image vectors. By integrating these feature extraction mechanisms with Milvus, an optimized vector database, our system can facilitate efficient and high-precision similarity searches across extensive product catalogs exceeding 200 million items with just 100GB of system RAM consumption. Empirical evaluations demonstrate that our matching system achieves a macro-average F1 score of 0.90, outperforming third-party solutions which attain an F1 score of 0.83. Our findings show the potential of combining domain-specific adaptations with state-of-the-art machine learning techniques to mitigate duplicate listings in large-scale e-commerce environments.
Via

Sep 18, 2025
Abstract:Unstructured data, such as text, images, audio, and video, comprises the vast majority of the world's information, yet it remains poorly supported by traditional data systems that rely on structured formats for computation. We argue for a new paradigm, which we call computing on unstructured data, built around three stages: extraction of latent structure, transformation of this structure through data processing techniques, and projection back into unstructured formats. This bi-directional pipeline allows unstructured data to benefit from the analytical power of structured computation, while preserving the richness and accessibility of unstructured representations for human and AI consumption. We illustrate this paradigm through two use cases and present the research components that need to be developed in a new data system called MXFlow.
Via

Sep 11, 2025
Abstract:While graph neural networks (GNNs) have achieved great success in learning from graph-structured data, their reliance on local, pairwise message passing restricts their ability to capture complex, high-order subgraph patterns. leading to insufficient structural expressiveness. Recent efforts have attempted to enhance structural expressiveness by integrating random walk kernels into GNNs. However, these methods are inherently designed for graph-level tasks, which limits their applicability to other downstream tasks such as node classification. Moreover, their fixed kernel configurations hinder the model's flexibility in capturing diverse subgraph structures. To address these limitations, this paper proposes a novel Mixture of Subgraph Experts (MoSE) framework for flexible and expressive subgraph-based representation learning across diverse graph tasks. Specifically, MoSE extracts informative subgraphs via anonymous walks and dynamically routes them to specialized experts based on structural semantics, enabling the model to capture diverse subgraph patterns with improved flexibility and interpretability. We further provide a theoretical analysis of MoSE's expressivity within the Subgraph Weisfeiler-Lehman (SWL) Test, proving that it is more powerful than SWL. Extensive experiments, together with visualizations of learned subgraph experts, demonstrate that MoSE not only outperforms competitive baselines but also provides interpretable insights into structural patterns learned by the model.
* 16 pages, 11 figures
Via

Sep 15, 2025
Abstract:Understanding user intents from UI interaction trajectories remains a challenging, yet crucial, frontier in intelligent agent development. While massive, datacenter-based, multi-modal large language models (MLLMs) possess greater capacity to handle the complexities of such sequences, smaller models which can run on-device to provide a privacy-preserving, low-cost, and low-latency user experience, struggle with accurate intent inference. We address these limitations by introducing a novel decomposed approach: first, we perform structured interaction summarization, capturing key information from each user action. Second, we perform intent extraction using a fine-tuned model operating on the aggregated summaries. This method improves intent understanding in resource-constrained models, even surpassing the base performance of large MLLMs.
Via

Sep 10, 2025
Abstract:Structured information extraction from scientific literature is crucial for capturing core concepts and emerging trends in specialized fields. While existing datasets aid model development, most focus on specific publication sections due to domain complexity and the high cost of annotating scientific texts. To address this limitation, we introduce SciNLP - a specialized benchmark for full-text entity and relation extraction in the Natural Language Processing (NLP) domain. The dataset comprises 60 manually annotated full-text NLP publications, covering 7,072 entities and 1,826 relations. Compared to existing research, SciNLP is the first dataset providing full-text annotations of entities and their relationships in the NLP domain. To validate the effectiveness of SciNLP, we conducted comparative experiments with similar datasets and evaluated the performance of state-of-the-art supervised models on this dataset. Results reveal varying extraction capabilities of existing models across academic texts of different lengths. Cross-comparisons with existing datasets show that SciNLP achieves significant performance improvements on certain baseline models. Using models trained on SciNLP, we implemented automatic construction of a fine-grained knowledge graph for the NLP domain. Our KG has an average node degree of 3.2 per entity, indicating rich semantic topological information that enhances downstream applications. The dataset is publicly available at https://github.com/AKADDC/SciNLP.
* EMNLP 2025 Main
Via

Sep 16, 2025
Abstract:Cross-view geo-localization aims to determine the geographical location of a query image by matching it against a gallery of images. This task is challenging due to the significant appearance variations of objects observed from variable views, along with the difficulty in extracting discriminative features. Existing approaches often rely on extracting features through feature map segmentation while neglecting spatial and semantic information. To address these issues, we propose the EVA02-based Multi-scale Frequency Attention Fusion (MFAF) method. The MFAF method consists of Multi-Frequency Branch-wise Block (MFB) and the Frequency-aware Spatial Attention (FSA) module. The MFB block effectively captures both low-frequency structural features and high-frequency edge details across multiple scales, improving the consistency and robustness of feature representations across various viewpoints. Meanwhile, the FSA module adaptively focuses on the key regions of frequency features, significantly mitigating the interference caused by background noise and viewpoint variability. Extensive experiments on widely recognized benchmarks, including University-1652, SUES-200, and Dense-UAV, demonstrate that the MFAF method achieves competitive performance in both drone localization and drone navigation tasks.
* 17 pages, 13 figures
Via

Sep 19, 2025
Abstract:Stereo matching achieves significant progress with iterative algorithms like RAFT-Stereo and IGEV-Stereo. However, these methods struggle in ill-posed regions with occlusions, textureless, or repetitive patterns, due to a lack of global context and geometric information for effective iterative refinement. To enable the existing iterative approaches to incorporate global context, we propose the Global Regulation and Excitation via Attention Tuning (GREAT) framework which encompasses three attention modules. Specifically, Spatial Attention (SA) captures the global context within the spatial dimension, Matching Attention (MA) extracts global context along epipolar lines, and Volume Attention (VA) works in conjunction with SA and MA to construct a more robust cost-volume excited by global context and geometric details. To verify the universality and effectiveness of this framework, we integrate it into several representative iterative stereo-matching methods and validate it through extensive experiments, collectively denoted as GREAT-Stereo. This framework demonstrates superior performance in challenging ill-posed regions. Applied to IGEV-Stereo, among all published methods, our GREAT-IGEV ranks first on the Scene Flow test set, KITTI 2015, and ETH3D leaderboards, and achieves second on the Middlebury benchmark. Code is available at https://github.com/JarvisLee0423/GREAT-Stereo.
* International Conference on Computer Vision (ICCV 2025)
Via
