Information extraction is the process of automatically extracting structured information from unstructured text data.
Near infrared diffuse optical imaging can be performed in reflectance and transmission mode and relies on physical models along with measurements to extract information on changes in chromophore concentration. Continuous-wave near-infrared diffuse optical imaging relies on accurate differential pathlength factors (DPFs) for quantitative chromophore estimation. Existing DPF definitions inherit formulation-dependent limitations that can introduce large errors in modified Beer--Lambert law analyses. These errors are significantly higher at smaller source-detector separations in a reflectance mode of measurement. This minimizes their applicability in situations where large area detection is used and also when signal depth is varying. Using Monte Carlo simulations, we derive two distance- and property-dependent DPF models one ideal and one experimentally practical and benchmark them against standard formulations. The proposed models achieve errors below 10 percent across broad optical conditions, whereas conventional DPFs can exceed 100 percent error. The theoretical predictions are further validated using controlled phantom experiments, demonstrating improved quantitative accuracy in CW-NIR imaging.
We consider small-data, large-scale decision problems in which a firm must make many operational decisions simultaneously (e.g., across a large product portfolio) while observing only a few, potentially noisy, data points per instance. Inspired by the success of large language models (LLMs), we propose a pretrain-then-finetune approach built on a designed Transformer model to address this challenge. The model is first pretrained on large-scale, domain-informed synthetic data that encode managerial knowledge and structural features of the decision environment, and is then fine-tuned on real observations. This new pipeline offers two complementary advantages: pretraining injects domain knowledge into the learning process and enables the training of high-capacity models using abundant synthetic data, while finetuning adapts the pretrained model to the operational environment and improves alignment with the true data-generating regime. While we have leveraged the Transformer's state-of-the-art representational capacity, particularly its attention mechanism, to efficiently extract cross-task structure, our approach is not an off-the-shelf application. Instead, it relies on problem-specific architectural design and a tailored training procedure to match the decision setting. Theoretically, we develop the first comprehensive error analysis regarding Transformer learning in relevant contexts, establishing nonasymptotic guarantees that validate the method's effectiveness. Critically, our analysis reveals how pretraining and fine-tuning jointly determine performance, with the dominant contribution governed by whichever is more favorable. In particular, finetuning exhibits an economies-of-scale effect, whereby transfer learning becomes increasingly effective as the number of instances grows.
Large language models (LLMs) often struggle with knowledge-intensive tasks due to hallucinations and outdated parametric knowledge. While Retrieval-Augmented Generation (RAG) addresses this by integrating external corpora, its effectiveness is limited by fragmented information in unstructured domain documents. Graph-augmented RAG (GraphRAG) emerged to enhance contextual reasoning through structured knowledge graphs, yet paradoxically underperforms vanilla RAG in real-world scenarios, exhibiting significant accuracy drops and prohibitive latency despite gains on complex queries. We identify the rigid application of GraphRAG to all queries, regardless of complexity, as the root cause. To resolve this, we propose an efficient and adaptive GraphRAG framework called EA-GraphRAG that dynamically integrates RAG and GraphRAG paradigms through syntax-aware complexity analysis. Our approach introduces: (i) a syntactic feature constructor that parses each query and extracts a set of structural features; (ii) a lightweight complexity scorer that maps these features to a continuous complexity score; and (iii) a score-driven routing policy that selects dense RAG for low-score queries, invokes graph-based retrieval for high-score queries, and applies complexity-aware reciprocal rank fusion to handle borderline cases. Extensive experiments on a comprehensive benchmark, consisting of two single-hop and two multi-hop QA benchmarks, demonstrate that our EA-GraphRAG significantly improves accuracy, reduces latency, and achieves state-of-the-art performance in handling mixed scenarios involving both simple and complex queries.
Benefiting from the significant advancements in text-to-image diffusion models, research in personalized image generation, particularly customized portrait generation, has also made great strides recently. However, existing methods either require time-consuming fine-tuning and lack generalizability or fail to achieve high fidelity in facial details. To address these issues, we propose FaceSnap, a novel method based on Stable Diffusion (SD) that requires only a single reference image and produces extremely consistent results in a single inference stage. This method is plug-and-play and can be easily extended to different SD models. Specifically, we design a new Facial Attribute Mixer that can extract comprehensive fused information from both low-level specific features and high-level abstract features, providing better guidance for image generation. We also introduce a Landmark Predictor that maintains reference identity across landmarks with different poses, providing diverse yet detailed spatial control conditions for image generation. Then we use an ID-preserving module to inject these into the UNet. Experimental results demonstrate that our approach performs remarkably in personalized and customized portrait generation, surpassing other state-of-the-art methods in this domain.
Transformation-based privacy-preserving face recognition (PPFR) aims to verify identities while hiding facial data from attackers and malicious service providers. Existing evaluations mostly treat privacy as resistance to pixel-level reconstruction, measured by PSNR and SSIM. We show that this reconstruction-centric view fails. We present FaceLinkGen, an identity extraction attack that performs linkage/matching and face regeneration directly from protected templates without recovering original pixels. On three recent PPFR systems, FaceLinkGen reaches over 98.5\% matching accuracy and above 96\% regeneration success, and still exceeds 92\% matching and 94\% regeneration in a near zero knowledge setting. These results expose a structural gap between pixel distortion metrics, which are widely used in PPFR evaluation, and real privacy. We show that visual obfuscation leaves identity information broadly exposed to both external intruders and untrusted service providers.
Ultrasound (US) imaging exhibits substantial heterogeneity across anatomical structures and acquisition protocols, posing significant challenges to the development of generalizable analysis models. Most existing methods are task-specific, limiting their suitability as clinically deployable foundation models. To address this limitation, the Foundation Model Challenge for Ultrasound Image Analysis (FM\_UIA~2026) introduces a large-scale multi-task benchmark comprising 27 subtasks across segmentation, classification, detection, and regression. In this paper, we present the official baseline for FM\_UIA~2026 based on a unified Multi-Head Multi-Task Learning (MH-MTL) framework that supports all tasks within a single shared network. The model employs an ImageNet-pretrained EfficientNet--B4 backbone for robust feature extraction, combined with a Feature Pyramid Network (FPN) to capture multi-scale contextual information. A task-specific routing strategy enables global tasks to leverage high-level semantic features, while dense prediction tasks exploit spatially detailed FPN representations. Training incorporates a composite loss with task-adaptive learning rate scaling and a cosine annealing schedule. Validation results demonstrate the feasibility and robustness of this unified design, establishing a strong and extensible baseline for ultrasound foundation model research. The code and dataset are publicly available at \href{https://github.com/lijiake2408/Foundation-Model-Challenge-for-Ultrasound-Image-Analysis}{GitHub}.
Fine-tuning large language models (LLMs) on sensitive datasets raises privacy concerns, as training data extraction (TDE) attacks can expose highly confidential information. Existing defenses against such attacks either lack formal privacy guarantees or incur substantial utility degradation. We observe that fine-tuning induces widespread probability shifts, yet preserving only a small subset of influential token-level deviations is sufficient; the remaining shifts can be aggressively smoothed with minimal impact on utility. Motivated by this insight, we propose SCP-$Δ_r$, a Near Access Freeness (NAF)-based algorithm that operates on relative probabilities and explicitly smooths low-impact tokens using a base model. SCP-$Δ_r$ achieves orders-of-magnitude better theoretical bounds than existing NAF based methods and provides strong empirical protection against TDE attacks with minimal performance loss.
Effective multimodal fusion requires mechanisms that can capture complex cross-modal dependencies while remaining computationally scalable for real-world deployment. Existing audio-visual fusion approaches face a fundamental trade-off: attention-based methods effectively model cross-modal relationships but incur quadratic computational complexity that prevents hierarchical, multi-scale architectures, while efficient fusion strategies rely on simplistic concatenation that fails to extract complementary cross-modal information. We introduce CMQKA, a novel cross-modal fusion mechanism that achieves linear O(N) complexity through efficient binary operations, enabling scalable hierarchical fusion previously infeasible with conventional attention. CMQKA employs bidirectional cross-modal Query-Key attention to extract complementary spatiotemporal features and uses learnable residual fusion to preserve modality-specific characteristics while enriching representations with cross-modal information. Building upon CMQKA, we present SNNergy, an energy-efficient multimodal fusion framework with a hierarchical architecture that processes inputs through progressively decreasing spatial resolutions and increasing semantic abstraction. This multi-scale fusion capability allows the framework to capture both local patterns and global context across modalities. Implemented with event-driven binary spike operations, SNNergy achieves remarkable energy efficiency while maintaining fusion effectiveness and establishing new state-of-the-art results on challenging audio-visual benchmarks, including CREMA-D, AVE, and UrbanSound8K-AV, significantly outperforming existing multimodal fusion baselines. Our framework advances multimodal fusion by introducing a scalable fusion mechanism that enables hierarchical cross-modal integration with practical energy efficiency for real-world audio-visual intelligence systems.
Despite strong performance in data-rich regimes, deep learning often underperforms in the data-scarce settings common in practice. While foundation models (FMs) trained on massive datasets demonstrate strong generalization by extracting general-purpose features, they can still suffer from scarce labeled data during downstream fine-tuning. To address this, we propose GeLDA, a semantics-aware generative latent data augmentation framework that leverages conditional diffusion models to synthesize samples in an FM-induced latent space. Because this space is low-dimensional and concentrates task-relevant information compared to the input space, GeLDA enables efficient, high-quality data generation. GeLDA conditions generation on auxiliary feature vectors that capture semantic relationships among classes or subdomains, facilitating data augmentation in low-resource domains. We validate GeLDA in two large-scale recognition tasks: (a) in zero-shot language-specific speech emotion recognition, GeLDA improves the Whisper-large baseline's unweighted average recall by 6.13%; and (b) in long-tailed image classification, it achieves 74.7% tail-class accuracy on ImageNet-LT, setting a new state-of-the-art result.
Although recent studies on time-series anomaly detection have increasingly adopted ever-larger neural network architectures such as transformers and foundation models, they incur high computational costs and memory usage, making them impractical for real-time and resource-constrained scenarios. Moreover, they often fail to demonstrate significant performance gains over simpler methods under rigorous evaluation protocols. In this study, we propose Patch-based representation learning for time-series Anomaly detection (PaAno), a lightweight yet effective method for fast and efficient time-series anomaly detection. PaAno extracts short temporal patches from time-series training data and uses a 1D convolutional neural network to embed each patch into a vector representation. The model is trained using a combination of triplet loss and pretext loss to ensure the embeddings capture informative temporal patterns from input patches. During inference, the anomaly score at each time step is computed by comparing the embeddings of its surrounding patches to those of normal patches extracted from the training time-series. Evaluated on the TSB-AD benchmark, PaAno achieved state-of-the-art performance, significantly outperforming existing methods, including those based on heavy architectures, on both univariate and multivariate time-series anomaly detection across various range-wise and point-wise performance measures.