Recent calls for pluralistic alignment of Large Language Models (LLMs) encourage adapting models to diverse user preferences. However, most prior work on personalized reward models heavily rely on additional identity information, such as demographic details or a predefined set of preference categories. To this end, we introduce SynthesizeMe, an approach to inducing synthetic user personas from user interactions for personalized reward modeling. SynthesizeMe first generates and verifies reasoning to explain user preferences, then induces synthetic user personas from that reasoning, and finally filters to informative prior user interactions in order to build personalized prompts for a particular user. We show that using SynthesizeMe induced prompts improves personalized LLM-as-a-judge accuracy by 4.4% on Chatbot Arena. Combining SynthesizeMe derived prompts with a reward model achieves top performance on PersonalRewardBench: a new curation of user-stratified interactions with chatbots collected from 854 users of Chatbot Arena and PRISM.
Large language models (LLMs) demonstrate powerful information handling capabilities and are widely integrated into chatbot applications. OpenAI provides a platform for developers to construct custom GPTs, extending ChatGPT's functions and integrating external services. Since its release in November 2023, over 3 million custom GPTs have been created. However, such a vast ecosystem also conceals security and privacy threats. For developers, instruction leaking attacks threaten the intellectual property of instructions in custom GPTs through carefully crafted adversarial prompts. For users, unwanted data access behavior by custom GPTs or integrated third-party services raises significant privacy concerns. To systematically evaluate the scope of threats in real-world LLM applications, we develop three phases instruction leaking attacks target GPTs with different defense level. Our widespread experiments on 10,000 real-world custom GPTs reveal that over 98.8% of GPTs are vulnerable to instruction leaking attacks via one or more adversarial prompts, and half of the remaining GPTs can also be attacked through multiround conversations. We also developed a framework to assess the effectiveness of defensive strategies and identify unwanted behaviors in custom GPTs. Our findings show that 77.5% of custom GPTs with defense strategies are vulnerable to basic instruction leaking attacks. Additionally, we reveal that 738 custom GPTs collect user conversational information, and identified 8 GPTs exhibiting data access behaviors that are unnecessary for their intended functionalities. Our findings raise awareness among GPT developers about the importance of integrating specific defensive strategies in their instructions and highlight users' concerns about data privacy when using LLM-based applications.
The advancement of Large Language Models (LLMs) has led to significant improvements in various service domains, including search, recommendation, and chatbot applications. However, applying state-of-the-art (SOTA) research to industrial settings presents challenges, as it requires maintaining flexible conversational abilities while also strictly complying with service-specific constraints. This can be seen as two conflicting requirements due to the probabilistic nature of LLMs. In this paper, we propose our approach to addressing this challenge and detail the strategies we employed to overcome their inherent limitations in real-world applications. We conduct a practical case study of a conversational agent designed for the e-commerce domain, detailing our implementation workflow and optimizations. Our findings provide insights into bridging the gap between academic research and real-world application, introducing a framework for developing scalable, controllable, and reliable AI-driven agents.
Conversational agents powered by large language models (LLMs) are rapidly becoming integral to our daily interactions, generating unprecedented amounts of conversational data. Such datasets offer a powerful lens into societal interests, trending topics, and collective concerns. Yet, existing approaches typically treat these interactions as independent and miss critical insights that could emerge from aggregating and reasoning across large-scale conversation logs. In this paper, we introduce Aggregative Question Answering, a novel task requiring models to reason explicitly over thousands of user-chatbot interactions to answer aggregative queries, such as identifying emerging concerns among specific demographics. To enable research in this direction, we construct a benchmark, WildChat-AQA, comprising 6,027 aggregative questions derived from 182,330 real-world chatbot conversations. Experiments show that existing methods either struggle to reason effectively or incur prohibitive computational costs, underscoring the need for new approaches capable of extracting collective insights from large-scale conversational data.
Large-language models (LLMs) and chatbot agents are known to provide wrong outputs at times, and it was recently found that this can never be fully prevented. Hence, uncertainty quantification plays a crucial role, aiming to quantify the level of ambiguity in either one overall number or two numbers for aleatoric and epistemic uncertainty. This position paper argues that this traditional dichotomy of uncertainties is too limited for the open and interactive setup that LLM agents operate in when communicating with a user, and that we need to research avenues that enrich uncertainties in this novel scenario. We review the literature and find that popular definitions of aleatoric and epistemic uncertainties directly contradict each other and lose their meaning in interactive LLM agent settings. Hence, we propose three novel research directions that focus on uncertainties in such human-computer interactions: Underspecification uncertainties, for when users do not provide all information or define the exact task at the first go, interactive learning, to ask follow-up questions and reduce the uncertainty about the current context, and output uncertainties, to utilize the rich language and speech space to express uncertainties as more than mere numbers. We expect that these new ways of dealing with and communicating uncertainties will lead to LLM agent interactions that are more transparent, trustworthy, and intuitive.
Assessing the quality of public transportation services requires the analysis of large quantities of data on the scheduled and actual trips and documents listing the quality constraints each service needs to meet. Interrogating such datasets with SQL queries, organizing and visualizing the data can be quite complex for most users. This paper presents a chatbot offering a user-friendly tool to interact with these datasets and support decision making. It is based on an agent architecture, which expands the capabilities of the core Large Language Model (LLM) by allowing it to interact with a series of tools that can execute several tasks, like performing SQL queries, plotting data and creating maps from the coordinates of a trip and its stops. This paper also tackles one of the main open problems of such Generative AI projects: collecting data to measure the system's performance. Our chatbot has been extensively tested with a workflow that asks several questions and stores the generated query, the retrieved data and the natural language response for each of them. Such questions are drawn from a set of base examples which are then completed with actual data from the database. This procedure yields a dataset for the evaluation of the chatbot's performance, especially the consistency of its answers and the correctness of the generated queries.
As the capabilities of chatbots and their underlying LLMs continue to dramatically improve, evaluating their performance has increasingly become a major blocker to their further development. A major challenge is the available benchmarking datasets, which are largely static, outdated, and lacking in multilingual coverage, limiting their ability to capture subtle linguistic and cultural variations. This paper introduces MEDAL, an automated multi-agent framework for generating, evaluating, and curating more representative and diverse open-domain dialogue evaluation benchmarks. Our approach leverages several state-of-the-art LLMs to generate user-chatbot multilingual dialogues, conditioned on varied seed contexts. A strong LLM (GPT-4.1) is then used for a multidimensional analysis of the performance of the chatbots, uncovering noticeable cross-lingual performance differences. Guided by this large-scale evaluation, we curate a new meta-evaluation multilingual benchmark and human-annotate samples with nuanced quality judgments. This benchmark is then used to assess the ability of several reasoning and non-reasoning LLMs to act as evaluators of open-domain dialogues. We find that current LLMs struggle to detect nuanced issues, particularly those involving empathy and reasoning.
Terpenoids are a crucial class of natural products that have been studied for over 150 years, but their interdisciplinary nature (spanning chemistry, pharmacology, and biology) complicates knowledge integration. To address this, the authors developed TeroSeek, a curated knowledge base (KB) built from two decades of terpenoid literature, coupled with an AI-powered question-answering chatbot and web service. Leveraging a retrieval-augmented generation (RAG) framework, TeroSeek provides structured, high-quality information and outperforms general-purpose large language models (LLMs) in terpenoid-related queries. It serves as a domain-specific expert tool for multidisciplinary research and is publicly available at http://teroseek.qmclab.com.
State-of-the-art large language models require specialized hardware and substantial energy to operate. As a consequence, cloud-based services that provide access to large language models have become very popular. In these services, the price users pay for an output provided by a model depends on the number of tokens the model uses to generate it -- they pay a fixed price per token. In this work, we show that this pricing mechanism creates a financial incentive for providers to strategize and misreport the (number of) tokens a model used to generate an output, and users cannot prove, or even know, whether a provider is overcharging them. However, we also show that, if an unfaithful provider is obliged to be transparent about the generative process used by the model, misreporting optimally without raising suspicion is hard. Nevertheless, as a proof-of-concept, we introduce an efficient heuristic algorithm that allows providers to significantly overcharge users without raising suspicion, highlighting the vulnerability of users under the current pay-per-token pricing mechanism. Further, to completely eliminate the financial incentive to strategize, we introduce a simple incentive-compatible token pricing mechanism. Under this mechanism, the price users pay for an output provided by a model depends on the number of characters of the output -- they pay a fixed price per character. Along the way, to illustrate and complement our theoretical results, we conduct experiments with several large language models from the $\texttt{Llama}$, $\texttt{Gemma}$ and $\texttt{Ministral}$ families, and input prompts from the LMSYS Chatbot Arena platform.
Self-disclosure, the sharing of one's thoughts and feelings, is affected by the perceived relationship between individuals. While chatbots are increasingly used for self-disclosure, the impact of a chatbot's framing on users' self-disclosure remains under-explored. We investigated how a chatbot's description of its relationship with users, particularly in terms of ephemerality, affects self-disclosure. Specifically, we compared a Familiar chatbot, presenting itself as a companion remembering past interactions, with a Stranger chatbot, presenting itself as a new, unacquainted entity in each conversation. In a mixed factorial design, participants engaged with either the Familiar or Stranger chatbot in two sessions across two days, with one conversation focusing on Emotional- and another Factual-disclosure. When Emotional-disclosure was sought in the first chatting session, Stranger-condition participants felt more comfortable self-disclosing. However, when Factual-disclosure was sought first, these differences were replaced by more enjoyment among Familiar-condition participants. Qualitative findings showed Stranger afforded anonymity and reduced judgement, whereas Familiar sometimes felt intrusive unless rapport was built via low-risk Factual-disclosure.