Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Recurrent neural networks (RNNs), particularly LSTMs, are effective for time-series tasks like sentiment analysis and short-term stock prediction. However, their computational complexity poses challenges for real-time deployment in resource constrained environments. While FPGAs offer a promising platform for energy-efficient AI acceleration, existing tools mainly target feed-forward networks, and LSTM acceleration typically requires full custom implementation. In this paper, we address this gap by leveraging the open-source and extensible FINN framework to enable the generalized deployment of LSTMs on FPGAs. Specifically, we leverage the Scan operator from the Open Neural Network Exchange (ONNX) specification to model the recurrent nature of LSTM computations, enabling support for mixed quantisation within them and functional verification of LSTM-based models. Furthermore, we introduce custom transformations within the FINN compiler to map the quantised ONNX computation graph to hardware blocks from the HLS kernel library of the FINN compiler and Vitis HLS. We validate the proposed tool-flow by training a quantised ConvLSTM model for a mid-price stock prediction task using the widely used dataset and generating a corresponding hardware IP of the model using our flow, targeting the XCZU7EV device. We show that the generated quantised ConvLSTM accelerator through our flow achieves a balance between performance (latency) and resource consumption, while matching (or bettering) inference accuracy of state-of-the-art models with reduced precision. We believe that the generalisable nature of the proposed flow will pave the way for resource-efficient RNN accelerator designs on FPGAs.




Large language model (LLM) is an effective approach to addressing data scarcity in low-resource scenarios. Recent existing research designs hand-crafted prompts to guide LLM for data augmentation. We introduce a data augmentation strategy for the aspect category sentiment analysis (ACSA) task that preserves the original sentence semantics and has linguistic diversity, specifically by providing a structured prompt template for an LLM to generate predefined content. In addition, we employ a post-processing technique to further ensure semantic consistency between the generated sentence and the original sentence. The augmented data increases the semantic coverage of the training distribution, enabling the model better to understand the relationship between aspect categories and sentiment polarities, enhancing its inference capabilities. Furthermore, we propose a confidence-weighted fine-tuning strategy to encourage the model to generate more confident and accurate sentiment polarity predictions. Compared with powerful and recent works, our method consistently achieves the best performance on four benchmark datasets over all baselines.
Measuring how semantics of words change over time improves our understanding of how cultures and perspectives change. Diachronic word embeddings help us quantify this shift, although previous studies leveraged substantial temporally annotated corpora. In this work, we use a corpus of 9.5 million Croatian news articles spanning the past 25 years and quantify semantic change using skip-gram word embeddings trained on five-year periods. Our analysis finds that word embeddings capture linguistic shifts of terms pertaining to major topics in this timespan (COVID-19, Croatia joining the European Union, technological advancements). We also find evidence that embeddings from post-2020 encode increased positivity in sentiment analysis tasks, contrasting studies reporting a decline in mental health over the same period.
During the wake of the Covid-19 pandemic, the educational paradigm has experienced a major change from in person learning traditional to online platforms. The change of learning convention has impacted the teacher-student especially in non-verbal communication. The absent of non-verbal communication has led to a reliance on verbal feedback which diminished the efficacy of the educational experience. This paper explores the integration of sentiment analysis into learning management systems (LMS) to bridge the student-teacher's gap by offering an alternative approach to interpreting student feedback beyond its verbal context. The research involves data preparation, feature selection, and the development of a deep neural network model encompassing word embedding, LSTM, and attention mechanisms. This model is compared against a logistic regression baseline to evaluate its efficacy in understanding student feedback. The study aims to bridge the communication gap between instructors and students in online learning environments, offering insights into the emotional context of student feedback and ultimately improving the quality of online education.
The increasing sophistication of large language models (LLMs) has sparked growing concerns regarding their potential role in exacerbating ideological polarization through the automated generation of persuasive and biased content. This study explores the extent to which fine-tuned LLMs can replicate and amplify polarizing discourse within online environments. Using a curated dataset of politically charged discussions extracted from Reddit, we fine-tune an open-source LLM to produce context-aware and ideologically aligned responses. The model's outputs are evaluated through linguistic analysis, sentiment scoring, and human annotation, with particular attention to credibility and rhetorical alignment with the original discourse. The results indicate that, when trained on partisan data, LLMs are capable of producing highly plausible and provocative comments, often indistinguishable from those written by humans. These findings raise significant ethical questions about the use of AI in political discourse, disinformation, and manipulation campaigns. The paper concludes with a discussion of the broader implications for AI governance, platform regulation, and the development of detection tools to mitigate adversarial fine-tuning risks.
We investigate the effectiveness of large language models (LLMs), including reasoning-based and non-reasoning models, in performing zero-shot financial sentiment analysis. Using the Financial PhraseBank dataset annotated by domain experts, we evaluate how various LLMs and prompting strategies align with human-labeled sentiment in a financial context. We compare three proprietary LLMs (GPT-4o, GPT-4.1, o3-mini) under different prompting paradigms that simulate System 1 (fast and intuitive) or System 2 (slow and deliberate) thinking and benchmark them against two smaller models (FinBERT-Prosus, FinBERT-Tone) fine-tuned on financial sentiment analysis. Our findings suggest that reasoning, either through prompting or inherent model design, does not improve performance on this task. Surprisingly, the most accurate and human-aligned combination of model and method was GPT-4o without any Chain-of-Thought (CoT) prompting. We further explore how performance is impacted by linguistic complexity and annotation agreement levels, uncovering that reasoning may introduce overthinking, leading to suboptimal predictions. This suggests that for financial sentiment classification, fast, intuitive "System 1"-like thinking aligns more closely with human judgment compared to "System 2"-style slower, deliberative reasoning simulated by reasoning models or CoT prompting. Our results challenge the default assumption that more reasoning always leads to better LLM decisions, particularly in high-stakes financial applications.
Sociotechnical systems, such as language technologies, frequently exhibit identity-based biases. These biases exacerbate the experiences of historically marginalized communities and remain understudied in low-resource contexts. While models and datasets specific to a language or with multilingual support are commonly recommended to address these biases, this paper empirically tests the effectiveness of such approaches in the context of gender, religion, and nationality-based identities in Bengali, a widely spoken but low-resourced language. We conducted an algorithmic audit of sentiment analysis models built on mBERT and BanglaBERT, which were fine-tuned using all Bengali sentiment analysis (BSA) datasets from Google Dataset Search. Our analyses showed that BSA models exhibit biases across different identity categories despite having similar semantic content and structure. We also examined the inconsistencies and uncertainties arising from combining pre-trained models and datasets created by individuals from diverse demographic backgrounds. We connected these findings to the broader discussions on epistemic injustice, AI alignment, and methodological decisions in algorithmic audits.
We study the Logistic Contextual Slate Bandit problem, where, at each round, an agent selects a slate of $N$ items from an exponentially large set (of size $2^{\Omega(N)}$) of candidate slates provided by the environment. A single binary reward, determined by a logistic model, is observed for the chosen slate. Our objective is to develop algorithms that maximize cumulative reward over $T$ rounds while maintaining low per-round computational costs. We propose two algorithms, Slate-GLM-OFU and Slate-GLM-TS, that accomplish this goal. These algorithms achieve $N^{O(1)}$ per-round time complexity via local planning (independent slot selections), and low regret through global learning (joint parameter estimation). We provide theoretical and empirical evidence supporting these claims. Under a well-studied diversity assumption, we prove that Slate-GLM-OFU incurs only $\tilde{O}(\sqrt{T})$ regret. Extensive experiments across a wide range of synthetic settings demonstrate that our algorithms consistently outperform state-of-the-art baselines, achieving both the lowest regret and the fastest runtime. Furthermore, we apply our algorithm to select in-context examples in prompts of Language Models for solving binary classification tasks such as sentiment analysis. Our approach achieves competitive test accuracy, making it a viable alternative in practical scenarios.
Research on understanding emotions in written language continues to expand, especially for understudied languages with distinctive regional expressions and cultural features, such as Bangla. This study examines emotion analysis using 22,698 social media comments from the EmoNoBa dataset. For language analysis, we employ machine learning models: Linear SVM, KNN, and Random Forest with n-gram data from a TF-IDF vectorizer. We additionally investigated how PCA affects the reduction of dimensionality. Moreover, we utilized a BiLSTM model and AdaBoost to improve decision trees. To make our machine learning models easier to understand, we used LIME to explain the predictions of the AdaBoost classifier, which uses decision trees. With the goal of advancing sentiment analysis in languages with limited resources, our work examines various techniques to find efficient techniques for emotion identification in Bangla.
Several machine learning algorithms have been developed for the prediction of Alzheimer's disease and related dementia (ADRD) from spontaneous speech. However, none of these algorithms have been translated for the prediction of broader cognitive impairment (CI), which in some cases is a precursor and risk factor of ADRD. In this paper, we evaluated several speech-based open-source methods originally proposed for the prediction of ADRD, as well as methods from multimodal sentiment analysis for the task of predicting CI from patient audio recordings. Results demonstrated that multimodal methods outperformed unimodal ones for CI prediction, and that acoustics-based approaches performed better than linguistics-based ones. Specifically, interpretable acoustic features relating to affect and prosody were found to significantly outperform BERT-based linguistic features and interpretable linguistic features, respectively. All the code developed for this study is available at https://github.com/JTColonel/catch.