Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.




Blockchain technology, lauded for its transparent and immutable nature, introduces a novel trust model. However, its decentralized structure raises concerns about potential inclusion of malicious or illegal content. This study focuses on Ethereum, presenting a data identification and restoration algorithm. Successfully recovering 175 common files, 296 images, and 91,206 texts, we employed the FastText algorithm for sentiment analysis, achieving a 0.9 accuracy after parameter tuning. Classification revealed 70,189 neutral, 5,208 positive, and 15,810 negative texts, aiding in identifying sensitive or illicit information. Leveraging the NSFWJS library, we detected seven indecent images with 100% accuracy. Our findings expose the coexistence of benign and harmful content on the Ethereum blockchain, including personal data, explicit images, divisive language, and racial discrimination. Notably, sensitive information targeted Chinese government officials. Proposing preventative measures, our study offers valuable insights for public comprehension of blockchain technology and regulatory agency guidance. The algorithms employed present innovative solutions to address blockchain data privacy and security concerns.




Transformer-based models have been widely adopted for sentiment analysis tasks due to their exceptional ability to capture contextual information. However, these methods often exhibit suboptimal accuracy in certain scenarios. By analyzing their attention distributions, we observe that existing models tend to allocate attention primarily to common words, overlooking less popular yet highly task-relevant terms, which significantly impairs overall performance. To address this issue, we propose an Adversarial Feedback for Attention(AFA) training mechanism that enables the model to automatically redistribute attention weights to appropriate focal points without requiring manual annotations. This mechanism incorporates a dynamic masking strategy that attempts to mask various words to deceive a discriminator, while the discriminator strives to detect significant differences induced by these masks. Additionally, leveraging the sensitivity of Transformer models to token-level perturbations, we employ a policy gradient approach to optimize attention distributions, which facilitates efficient and rapid convergence. Experiments on three public datasets demonstrate that our method achieves state-of-the-art results. Furthermore, applying this training mechanism to enhance attention in large language models yields a further performance improvement of 12.6%




With the rapid growth of unstructured data from social media, reviews, and forums, text mining has become essential in Information Systems (IS) for extracting actionable insights. Summarization can condense fragmented, emotion-rich posts, but existing methods-optimized for structured news-struggle with noisy, informal content. Emotional cues are critical for IS tasks such as brand monitoring and market analysis, yet few studies integrate sentiment modeling into summarization of short user-generated texts. We propose a sentiment-aware framework extending extractive (TextRank) and abstractive (UniLM) approaches by embedding sentiment signals into ranking and generation processes. This dual design improves the capture of emotional nuances and thematic relevance, producing concise, sentiment-enriched summaries that enhance timely interventions and strategic decision-making in dynamic online environments.
This study investigates emotion drift: the change in emotional state across a single text, within mental health-related messages. While sentiment analysis typically classifies an entire message as positive, negative, or neutral, the nuanced shift of emotions over the course of a message is often overlooked. This study detects sentence-level emotions and measures emotion drift scores using pre-trained transformer models such as DistilBERT and RoBERTa. The results provide insights into patterns of emotional escalation or relief in mental health conversations. This methodology can be applied to better understand emotional dynamics in content.
This study analyzes the emotional tone of dialogue in J. R. R. Tolkien's The Hobbit (1937) using computational text analysis. Dialogue was extracted with regular expressions, then preprocessed, and scored using the NRC-VAD lexicon to quantify emotional dimensions. The results show that the dialogue maintains a generally positive (high valence) and calm (low arousal) tone, with a gradually increasing sense of agency (dominance) as the story progresses. These patterns reflect the novel's emotional rhythm: moments of danger and excitement are regularly balanced by humor, camaraderie, and relief. Visualizations -- including emotional trajectory graphs and word clouds -- highlight how Tolkien's language cycles between tension and comfort. By combining computational tools with literary interpretation, this study demonstrates how digital methods can uncover subtle emotional structures in literature, revealing the steady rhythm and emotional modulation that shape the storytelling in The Hobbit.




Existing methods in domain generalization for Multimodal Sentiment Analysis (MSA) often overlook inter-modal synergies during invariant features extraction, which prevents the accurate capture of the rich semantic information within multimodal data. Additionally, while knowledge injection techniques have been explored in MSA, they often suffer from fragmented cross-modal knowledge, overlooking specific representations that exist beyond the confines of unimodal. To address these limitations, we propose a novel MSA framework designed for domain generalization. Firstly, the framework incorporates a Mixture of Invariant Experts model to extract domain-invariant features, thereby enhancing the model's capacity to learn synergistic relationships between modalities. Secondly, we design a Cross-Modal Adapter to augment the semantic richness of multimodal representations through cross-modal knowledge injection. Extensive domain experiments conducted on three datasets demonstrate that the proposed MIDG achieves superior performance.
The status quo for labeling text is third-party annotation, but there are many cases where information directly from the document's source would be preferable over a third-person proxy, especially for egocentric features like sentiment and belief. We introduce author labeling, an annotation technique where the writer of the document itself annotates the data at the moment of creation. We collaborate with a commercial chatbot with over 10,000 users to deploy an author labeling annotation system for subjective features related to product recommendation. This system identifies task-relevant queries, generates on-the-fly labeling questions, and records authors' answers in real time. We train and deploy an online-learning model architecture for product recommendation that continuously improves from author labeling and find it achieved a 534% increase in click-through rate compared to an industry advertising baseline running concurrently. We then compare the quality and practicality of author labeling to three traditional annotation approaches for sentiment analysis and find author labeling to be higher quality, faster to acquire, and cheaper. These findings reinforce existing literature that annotations, especially for egocentric and subjective beliefs, are significantly higher quality when labeled by the author rather than a third party. To facilitate broader scientific adoption, we release an author labeling service for the research community at academic.echollm.io.




We introduce FIN-bench-v2, a unified benchmark suite for evaluating large language models in Finnish. FIN-bench-v2 consolidates Finnish versions of widely used benchmarks together with an updated and expanded version of the original FIN-bench into a single, consistently formatted collection, covering multiple-choice and generative tasks across reading comprehension, commonsense reasoning, sentiment analysis, world knowledge, and alignment. All datasets are converted to HuggingFace Datasets, which include both cloze and multiple-choice prompt formulations with five variants per task, and we incorporate human annotation or review for machine-translated resources such as GoldenSwag and XED. To select robust tasks, we pretrain a set of 2.15B-parameter decoder-only models and use their learning curves to compute monotonicity, signal-to-noise, non-random performance, and model ordering consistency, retaining only tasks that satisfy all criteria. We further evaluate a set of larger instruction-tuned models to characterize performance across tasks and prompt formulations. All datasets, prompts, and evaluation configurations are publicly available via our fork of the Language Model Evaluation Harness at https://github.com/LumiOpen/lm-evaluation-harness. Supplementary resources are released in a separate repository at https://github.com/TurkuNLP/FIN-bench-v2.
What is your messaging data used for? While many users do not often think about the information companies can gather based off of their messaging platform of choice, it is nonetheless important to consider as society increasingly relies on short-form electronic communication. While most companies keep their data closely guarded, inaccessible to users or potential hackers, Apple has opened a door to their walled-garden ecosystem, providing iMessage users on Mac with one file storing all their messages and attached metadata. With knowledge of this locally stored file, the question now becomes: What can our data do for us? In the creation of our iMessage text message analyzer, we set out to answer five main research questions focusing on topic modeling, response times, reluctance scoring, and sentiment analysis. This paper uses our exploratory data to show how these questions can be answered using our analyzer and its potential in future studies on iMessage data.




Large Language Models (LLMs) have become effective zero-shot classifiers, but their high computational requirements and environmental costs limit their practicality for large-scale annotation in high-performance computing (HPC) environments. To support more sustainable workflows, we present Text2Graph, an open-source Python package that provides a modular implementation of existing text-to-graph classification approaches. The framework enables users to combine LLM-based partial annotation with Graph Neural Network (GNN) label propagation in a flexible manner, making it straightforward to swap components such as feature extractors, edge construction methods, and sampling strategies. We benchmark Text2Graph on a zero-shot setting using five datasets spanning topic classification and sentiment analysis tasks, comparing multiple variants against other zero-shot approaches for text classification. In addition to reporting performance, we provide detailed estimates of energy consumption and carbon emissions, showing that graph-based propagation achieves competitive results at a fraction of the energy and environmental cost.