Text classification is the process of categorizing text documents into predefined categories or labels.
Large language models (LLMs) are challenging to deploy for domain-specific tasks due to their massive scale. While distilling a fine-tuned LLM into a smaller student model is a promising alternative, the capacity gap between teacher and student often leads to suboptimal performance. This raises a key question: when and how can a student model match or even surpass its teacher on domain-specific tasks? In this work, we propose a novel theoretical insight: a student can outperform its teacher if its advantage on a Student-Favored Subdomain (SFS) outweighs its deficit on the Teacher-Favored Subdomain (TFS). Guided by this insight, we propose Scheduled Checkpoint Distillation (SCD), which reduces the TFS deficit by emulating the teacher's convergence process during supervised fine-tuning (SFT) on the domain task, and a sample-wise Adaptive Weighting (AW) mechanism to preserve student strengths on SFS. Experiments across diverse domain tasks--including QA, NER, and text classification in multiple languages--show that our method consistently outperforms existing distillation approaches, allowing the student model to match or even exceed the performance of its fine-tuned teacher.
This study investigates the feature representations produced by publicly available open source medical vision-language models (VLMs). While medical VLMs are expected to capture diagnostically relevant features, their learned representations remain underexplored, and standard evaluations like classification accuracy do not fully reveal if they acquire truly discriminative, lesion-specific features. Understanding these representations is crucial for revealing medical image structures and improving downstream tasks in medical image analysis. This study aims to investigate the feature distributions learned by medical VLMs and evaluate the impact of medical specialization. We analyze the feature distribution of multiple image modalities extracted by some representative medical VLMs across lesion classification datasets on multiple modalities. These distributions were compared them with non-medical VLMs to assess the domain-specific medical training. Our experiments showed that medical VLMs can extract discriminative features that are effective for medical classification tasks. Moreover, it was found that non-medical VLMs with recent improvement with contextual enrichment such as LLM2CLIP produce more refined feature representations. Our results imply that enhancing text encoder is more crucial than training intensively on medical images when developing medical VLMs. Notably, non-medical models are particularly vulnerable to biases introduced by overlaied text strings on images. These findings underscore the need for careful consideration on model selection according to downstream tasks besides potential risks in inference due to background biases such as textual information in images.
Graph Foundation Models (GFMs) have emerged as a frontier in graph learning, which are expected to deliver transferable representations across diverse tasks. However, GFMs remain constrained by in-memory bottlenecks: they attempt to encode knowledge into model parameters, which limits semantic capacity, introduces heavy lossy compression with conflicts, and entangles graph representation with the knowledge in ways that hinder efficient adaptation, undermining scalability and interpretability. In this work,we propose RAG-GFM, a Retrieval-Augmented Generation aided Graph Foundation Model that offloads knowledge from parameters and complements parameterized learning. To externalize graph knowledge, we build a dual-modal unified retrieval module, where a semantic store from prefix-structured text and a structural store from centrality-based motif. To preserve heterogeneous information, we design a dual-view alignment objective that contrasts both modalities to capture both content and relational patterns. To enable efficient downstream adaptation, we perform in-context augmentation to enrich supporting instances with retrieved texts and motifs as contextual evidence. Extensive experiments on five benchmark graph datasets demonstrate that RAG-GFM consistently outperforms 13 state-of-the-art baselines in both cross-domain node and graph classification, achieving superior effectiveness and efficiency.
In federated learning, Transformer, as a popular architecture, faces critical challenges in defending against gradient attacks and improving model performance in both Computer Vision (CV) and Natural Language Processing (NLP) tasks. It has been revealed that the gradient of Position Embeddings (PEs) in Transformer contains sufficient information, which can be used to reconstruct the input data. To mitigate this issue, we introduce a Masked Jigsaw Puzzle (MJP) framework. MJP starts with random token shuffling to break the token order, and then a learnable \textit{unknown (unk)} position embedding is used to mask out the PEs of the shuffled tokens. In this manner, the local spatial information which is encoded in the position embeddings is disrupted, and the models are forced to learn feature representations that are less reliant on the local spatial information. Notably, with the careful use of MJP, we can not only improve models' robustness against gradient attacks, but also boost their performance in both vision and text application scenarios, such as classification for images (\textit{e.g.,} ImageNet-1K) and sentiment analysis for text (\textit{e.g.,} Yelp and Amazon). Experimental results suggest that MJP is a unified framework for different Transformer-based models in both vision and language tasks. Code is publicly available via https://github.com/ywxsuperstar/transformerattack
Knowledge Graphs~(KGs) often suffer from unreliable knowledge, which restricts their utility. Triple Classification~(TC) aims to determine the validity of triples from KGs. Recently, text-based methods learn entity and relation representations from natural language descriptions, significantly improving the generalization capabilities of TC models and setting new benchmarks in performance. However, there are still two critical challenges. First, existing methods often ignore the effective semantic interaction among different KG components. Second, most approaches adopt single binary classification training objective, leading to insufficient semantic representation learning. To address these challenges, we propose \textbf{SASA}, a novel framework designed to enhance TC models via separated attention mechanism and semantic-aware contrastive learning~(CL). Specifically, we first propose separated attention mechanism to encode triples into decoupled contextual representations and then fuse them through a more effective interactive way. Then, we introduce semantic-aware hierarchical CL as auxiliary training objective to guide models in improving their discriminative capabilities and achieving sufficient semantic learning, considering both local level and global level CL. Experimental results across two benchmark datasets demonstrate that SASA significantly outperforms state-of-the-art methods. In terms of accuracy, we advance the state-of-the-art by +5.9\% on FB15k-237 and +3.4\% on YAGO3-10.
Joint audio-text models are widely used for music retrieval, yet they struggle with semantic phenomena such as negation. Negation is fundamental for distinguishing the absence (or presence) of musical elements (e.g., "with vocals" vs. "without vocals"), but current systems fail to represent this reliably. In this work, we investigate and mitigate this limitation by training CLAP models from scratch on the Million Song Dataset with LP-MusicCaps-MSD captions. We introduce negation through text augmentation and a dissimilarity-based contrastive loss, designed to explicitly separate original and negated captions in the joint embedding space. To evaluate progress, we propose two protocols that frame negation modeling as retrieval and binary classification tasks. Experiments demonstrate that both methods, individually and combined, improve negation handling while largely preserving retrieval performance.
Deep neural networks have achieved remarkable success across a variety of tasks, yet they often suffer from unreliable probability estimates. As a result, they can be overconfident in their predictions. Conformal Prediction (CP) offers a principled framework for uncertainty quantification, yielding prediction sets with rigorous coverage guarantees. Existing conformal training methods optimize for overall set size, but shaping the prediction sets in a class-conditional manner is not straightforward and typically requires prior knowledge of the data distribution. In this work, we introduce Class Adaptive Conformal Training (CaCT), which formulates conformal training as an augmented Lagrangian optimization problem that adaptively learns to shape prediction sets class-conditionally without making any distributional assumptions. Experiments on multiple benchmark datasets, including standard and long-tailed image recognition as well as text classification, demonstrate that CaCT consistently outperforms prior conformal training methods, producing significantly smaller and more informative prediction sets while maintaining the desired coverage guarantees.
Contrastive language-audio pretraining (CLAP) has achieved notable success in learning semantically rich audio representations and is widely adopted for various audio-related tasks. However, current CLAP models face several key limitations. First, they are typically trained on relatively small datasets, often comprising a few million audio samples. Second, existing CLAP models are restricted to short and fixed duration, which constrains their usage in real-world scenarios with variable-duration audio. Third, the standard contrastive training objective operates on global representations, which may hinder the learning of dense, fine-grained audio features. To address these challenges, we introduce Scalable Language-Audio Pretraining (SLAP), which scales language-audio pretraining to 109 million audio-text pairs with variable audio durations and incorporates multiple training objectives. SLAP unifies contrastive loss with additional self-supervised and captioning losses in a single-stage training, facilitating the learning of richer dense audio representations. The proposed SLAP model achieves new state-of-the-art performance on audio-text retrieval and zero-shot audio classification tasks, demonstrating its effectiveness across diverse benchmarks.
Recognizing and navigating client resistance is critical for effective mental health counseling, yet detecting such behaviors is particularly challenging in text-based interactions. Existing NLP approaches oversimplify resistance categories, ignore the sequential dynamics of therapeutic interventions, and offer limited interpretability. To address these limitations, we propose PsyFIRE, a theoretically grounded framework capturing 13 fine-grained resistance behaviors alongside collaborative interactions. Based on PsyFIRE, we construct the ClientResistance corpus with 23,930 annotated utterances from real-world Chinese text-based counseling, each supported by context-specific rationales. Leveraging this dataset, we develop RECAP, a two-stage framework that detects resistance and fine-grained resistance types with explanations. RECAP achieves 91.25% F1 for distinguishing collaboration and resistance and 66.58% macro-F1 for fine-grained resistance categories classification, outperforming leading prompt-based LLM baselines by over 20 points. Applied to a separate counseling dataset and a pilot study with 62 counselors, RECAP reveals the prevalence of resistance, its negative impact on therapeutic relationships and demonstrates its potential to improve counselors' understanding and intervention strategies.
Learning representative embeddings for different types of speaking styles, such as emotion, age, and gender, is critical for both recognition tasks (e.g., cognitive computing and human-computer interaction) and generative tasks (e.g., style-controllable speech generation). In this work, we introduce ParaMETA, a unified and flexible framework for learning and controlling speaking styles directly from speech. Unlike existing methods that rely on single-task models or cross-modal alignment, ParaMETA learns disentangled, task-specific embeddings by projecting speech into dedicated subspaces for each type of style. This design reduces inter-task interference, mitigates negative transfer, and allows a single model to handle multiple paralinguistic tasks such as emotion, gender, age, and language classification. Beyond recognition, ParaMETA enables fine-grained style control in Text-To-Speech (TTS) generative models. It supports both speech- and text-based prompting and allows users to modify one speaking styles while preserving others. Extensive experiments demonstrate that ParaMETA outperforms strong baselines in classification accuracy and generates more natural and expressive speech, while maintaining a lightweight and efficient model suitable for real-world applications.