Abstract:In the age of information overload, content management for online news articles relies on efficient summarization to enhance accessibility and user engagement. This article addresses the challenge of extractive text summarization by employing advanced machine learning techniques to generate concise and coherent summaries while preserving the original meaning. Using the Cornell Newsroom dataset, comprising 1.3 million article-summary pairs, we developed a pipeline leveraging BERT embeddings to transform textual data into numerical representations. By framing the task as a binary classification problem, we explored various models, including logistic regression, feed-forward neural networks, and long short-term memory (LSTM) networks. Our findings demonstrate that LSTM networks, with their ability to capture sequential dependencies, outperform baseline methods like Lede-3 and simpler models in F1 score and ROUGE-1 metrics. This study underscores the potential of automated summarization in improving content management systems for online news platforms, enabling more efficient content organization and enhanced user experiences.
Abstract:As large language models (LLMs) are increasingly deployed in critical applications, ensuring their robustness and safety alignment remains a major challenge. Despite the overall success of alignment techniques such as reinforcement learning from human feedback (RLHF) on typical prompts, LLMs remain vulnerable to jailbreak attacks enabled by crafted adversarial triggers appended to user prompts. Most existing jailbreak methods either rely on inefficient searches over discrete token spaces or direct optimization of continuous embeddings. While continuous embeddings can be given directly to selected open-source models as input, doing so is not feasible for proprietary models. On the other hand, projecting these embeddings back into valid discrete tokens introduces additional complexity and often reduces attack effectiveness. We propose an intrinsic optimization method which directly optimizes relaxed one-hot encodings of the adversarial suffix tokens using exponentiated gradient descent coupled with Bregman projection, ensuring that the optimized one-hot encoding of each token always remains within the probability simplex. We provide theoretical proof of convergence for our proposed method and implement an efficient algorithm that effectively jailbreaks several widely used LLMs. Our method achieves higher success rates and faster convergence compared to three state-of-the-art baselines, evaluated on five open-source LLMs and four adversarial behavior datasets curated for evaluating jailbreak methods. In addition to individual prompt attacks, we also generate universal adversarial suffixes effective across multiple prompts and demonstrate transferability of optimized suffixes to different LLMs.
Abstract:As Large Language Models (LLMs) are widely used, understanding them systematically is key to improving their safety and realizing their full potential. Although many models are aligned using techniques such as reinforcement learning from human feedback (RLHF), they are still vulnerable to jailbreaking attacks. Some of the existing adversarial attack methods search for discrete tokens that may jailbreak a target model while others try to optimize the continuous space represented by the tokens of the model's vocabulary. While techniques based on the discrete space may prove to be inefficient, optimization of continuous token embeddings requires projections to produce discrete tokens, which might render them ineffective. To fully utilize the constraints and the structures of the space, we develop an intrinsic optimization technique using exponentiated gradient descent with the Bregman projection method to ensure that the optimized one-hot encoding always stays within the probability simplex. We prove the convergence of the technique and implement an efficient algorithm that is effective in jailbreaking several widely used LLMs. We demonstrate the efficacy of the proposed technique using five open-source LLMs on four openly available datasets. The results show that the technique achieves a higher success rate with great efficiency compared to three other state-of-the-art jailbreaking techniques. The source code for our implementation is available at: https://github.com/sbamit/Exponentiated-Gradient-Descent-LLM-Attack