Sign language recognition is a computer vision and natural language processing task that involves automatically recognizing and translating sign language gestures into written or spoken language. The goal of sign language recognition is to develop algorithms that can understand and interpret sign language, enabling people who use sign language as their primary mode of communication to communicate more easily with non-signers.




In this paper, we present our solution to the Cross-View Isolated Sign Language Recognition (CV-ISLR) challenge held at WWW 2025. CV-ISLR addresses a critical issue in traditional Isolated Sign Language Recognition (ISLR), where existing datasets predominantly capture sign language videos from a frontal perspective, while real-world camera angles often vary. To accurately recognize sign language from different viewpoints, models must be capable of understanding gestures from multiple angles, making cross-view recognition challenging. To address this, we explore the advantages of ensemble learning, which enhances model robustness and generalization across diverse views. Our approach, built on a multi-dimensional Video Swin Transformer model, leverages this ensemble strategy to achieve competitive performance. Finally, our solution ranked 3rd in both the RGB-based ISLR and RGB-D-based ISLR tracks, demonstrating the effectiveness in handling the challenges of cross-view recognition. The code is available at: https://github.com/Jiafei127/CV_ISLR_WWW2025.
Sign Language Translation (SLT) aims to map sign language videos to spoken language text. A common approach relies on gloss annotations as an intermediate representation, decomposing SLT into two sub-tasks: video-to-gloss recognition and gloss-to-text translation. While effective, this paradigm depends on expert-annotated gloss labels, which are costly and rarely available in existing datasets, limiting its scalability. To address this challenge, we propose a gloss-free pseudo gloss generation framework that eliminates the need for human-annotated glosses while preserving the structured intermediate representation. Specifically, we prompt a Large Language Model (LLM) with a few example text-gloss pairs using in-context learning to produce draft sign glosses from spoken language text. To enhance the correspondence between LLM-generated pseudo glosses and the sign sequences in video, we correct the ordering in the pseudo glosses for better alignment via a weakly supervised learning process. This reordering facilitates the incorporation of auxiliary alignment objectives, and allows for the use of efficient supervision via a Connectionist Temporal Classification (CTC) loss. We train our SLT mode, which consists of a vision encoder and a translator, through a three-stage pipeline, which progressively narrows the modality gap between sign language and spoken language. Despite its simplicity, our approach outperforms previous state-of-the-art gloss-free frameworks on two SLT benchmarks and achieves competitive results compared to gloss-based methods.
Traffic sign recognition (TSR) systems are crucial for autonomous driving but are vulnerable to backdoor attacks. Existing physical backdoor attacks either lack stealth, provide inflexible attack control, or ignore emerging Vision-Large-Language-Models (VLMs). In this paper, we introduce FIGhost, the first physical-world backdoor attack leveraging fluorescent ink as triggers. Fluorescent triggers are invisible under normal conditions and activated stealthily by ultraviolet light, providing superior stealthiness, flexibility, and untraceability. Inspired by real-world graffiti, we derive realistic trigger shapes and enhance their robustness via an interpolation-based fluorescence simulation algorithm. Furthermore, we develop an automated backdoor sample generation method to support three attack objectives. Extensive evaluations in the physical world demonstrate FIGhost's effectiveness against state-of-the-art detectors and VLMs, maintaining robustness under environmental variations and effectively evading existing defenses.
Large Language Models (LLMs) are widely used in Spoken Language Understanding (SLU). Recent SLU models process audio directly by adapting speech input into LLMs for better multimodal learning. A key consideration for these models is the cross-modal alignment between text and audio modalities, which is a telltale sign as to whether or not LLM is able to associate semantic meaning to audio segments. While various methods exist for fusing these modalities, there is no standard metric to evaluate alignment quality in LLMs. In this work, we propose a new metric, ALAS (Automatic Latent Alignment Score). Our study examines the correlation between audio and text representations across transformer layers, for two different tasks (Spoken Question Answering and Emotion Recognition). We showcase that our metric behaves as expected across different layers and different tasks.
Real world collection of Activities of Daily Living data is challenging due to privacy concerns, costly deployment and labeling, and the inherent sparsity and imbalance of human behavior. We present ADLGen, a generative framework specifically designed to synthesize realistic, event triggered, and symbolic sensor sequences for ambient assistive environments. ADLGen integrates a decoder only Transformer with sign based symbolic temporal encoding, and a context and layout aware sampling mechanism to guide generation toward semantically rich and physically plausible sensor event sequences. To enhance semantic fidelity and correct structural inconsistencies, we further incorporate a large language model into an automatic generate evaluate refine loop, which verifies logical, behavioral, and temporal coherence and generates correction rules without manual intervention or environment specific tuning. Through comprehensive experiments with novel evaluation metrics, ADLGen is shown to outperform baseline generators in statistical fidelity, semantic richness, and downstream activity recognition, offering a scalable and privacy-preserving solution for ADL data synthesis.




This study introduces an integrated approach to recognizing Arabic Sign Language (ArSL) using state-of-the-art deep learning models such as MobileNetV3, ResNet50, and EfficientNet-B2. These models are further enhanced by explainable AI (XAI) techniques to boost interpretability. The ArSL2018 and RGB Arabic Alphabets Sign Language (AASL) datasets are employed, with EfficientNet-B2 achieving peak accuracies of 99.48\% and 98.99\%, respectively. Key innovations include sophisticated data augmentation methods to mitigate class imbalance, implementation of stratified 5-fold cross-validation for better generalization, and the use of Grad-CAM for clear model decision transparency. The proposed system not only sets new benchmarks in recognition accuracy but also emphasizes interpretability, making it suitable for applications in healthcare, education, and inclusive communication technologies.
Recent advances in sign language research have benefited from CNN-based backbones, which are primarily transferred from traditional computer vision tasks (\eg object identification, image recognition). However, these CNN-based backbones usually excel at extracting features like contours and texture, but may struggle with capturing sign-related features. In fact, sign language tasks require focusing on sign-related regions, including the collaboration between different regions (\eg left hand region and right hand region) and the effective content in a single region. To capture such region-related features, we introduce MixSignGraph, which represents sign sequences as a group of mixed graphs and designs the following three graph modules for feature extraction, \ie Local Sign Graph (LSG) module, Temporal Sign Graph (TSG) module and Hierarchical Sign Graph (HSG) module. Specifically, the LSG module learns the correlation of intra-frame cross-region features within one frame, \ie focusing on spatial features. The TSG module tracks the interaction of inter-frame cross-region features among adjacent frames, \ie focusing on temporal features. The HSG module aggregates the same-region features from different-granularity feature maps of a frame, \ie focusing on hierarchical features. In addition, to further improve the performance of sign language tasks without gloss annotations, we propose a simple yet counter-intuitive Text-driven CTC Pre-training (TCP) method, which generates pseudo gloss labels from text labels for model pre-training. Extensive experiments conducted on current five public sign language datasets demonstrate the superior performance of the proposed model. Notably, our model surpasses the SOTA models on multiple sign language tasks across several datasets, without relying on any additional cues.




Searching for unfamiliar American Sign Language (ASL) signs is challenging for learners because, unlike spoken languages, they cannot type a text-based query to look up an unfamiliar sign. Advances in isolated sign recognition have enabled the creation of video-based dictionaries, allowing users to submit a video and receive a list of the closest matching signs. Previous HCI research using Wizard-of-Oz prototypes has explored interface designs for ASL dictionaries. Building on these studies, we incorporate their design recommendations and leverage state-of-the-art sign-recognition technology to develop an automated video-based dictionary. We also present findings from an observational study with twelve novice ASL learners who used this dictionary during video-comprehension and question-answering tasks. Our results address human-AI interaction challenges not covered in previous WoZ research, including recording and resubmitting signs, unpredictable outputs, system latency, and privacy concerns. These insights offer guidance for designing and deploying video-based ASL dictionary systems.
In this work, we enable gamers to share their gaming experience on social media by automatically generating eye-catching highlight reels from their gameplay session Our automation will save time for gamers while increasing audience engagement. We approach the highlight generation problem by first identifying intervals in the video where interesting events occur and then concatenate them. We developed an in-house gameplay event detection dataset containing interesting events annotated by humans using VIA video annotator. Traditional techniques for highlight detection such as game engine integration requires expensive collaboration with game developers. OCR techniques which detect patches of specific images or texts require expensive per game engineering and may not generalize across game UI and different language. We finetuned a multimodal general purpose video understanding model such as X-CLIP using our dataset which generalizes across multiple games in a genre without per game engineering. Prompt engineering was performed to improve the classification performance of this multimodal model. Our evaluation showed that such a finetuned model can detect interesting events in first person shooting games from unseen gameplay footage with more than 90% accuracy. Moreover, our model performed significantly better on low resource games (small dataset) when trained along with high resource games, showing signs of transfer learning. To make the model production ready, we used ONNX libraries to enable cross platform inference. These libraries also provide post training quantization tools to reduce model size and inference time for deployment. ONNX runtime libraries with DirectML backend were used to perform efficient inference on Windows OS. We show that natural language supervision in the X-CLIP model leads to data efficient and highly performant video recognition models.




This paper introduces a comprehensive model training pipeline for Isolated Sign Language Recognition (ISLR) designed to accommodate the distinctive characteristics and constraints of the Sign Language (SL) domain. The constructed pipeline incorporates carefully selected image and video augmentations to tackle the challenges of low data quality and varying sign speeds. Including an additional regression head combined with IoU-balanced classification loss enhances the model's awareness of the gesture and simplifies capturing temporal information. Extensive experiments demonstrate that the developed training pipeline easily adapts to different datasets and architectures. Additionally, the ablation study shows that each proposed component expands the potential to consider ISLR task specifics. The presented strategies improve recognition performance on a broad set of ISLR benchmarks. Moreover, we achieved a state-of-the-art result on the WLASL and Slovo benchmarks with 1.63% and 14.12% improvements compared to the previous best solution, respectively.