Abstract:To address the computational and storage challenges posed by large-scale datasets in deep learning, dataset distillation has been proposed to synthesize a compact dataset that replaces the original while maintaining comparable model performance. Unlike optimization-based approaches that require costly bi-level optimization, distribution matching (DM) methods improve efficiency by aligning the distributions of synthetic and original data, thereby eliminating nested optimization. DM achieves high computational efficiency and has emerged as a promising solution. However, existing DM methods, constrained to Euclidean space, treat data as independent and identically distributed points, overlooking complex geometric and hierarchical relationships. To overcome this limitation, we propose a novel hyperbolic dataset distillation method, termed HDD. Hyperbolic space, characterized by negative curvature and exponential volume growth with distance, naturally models hierarchical and tree-like structures. HDD embeds features extracted by a shallow network into the Lorentz hyperbolic space, where the discrepancy between synthetic and original data is measured by the hyperbolic (geodesic) distance between their centroids. By optimizing this distance, the hierarchical structure is explicitly integrated into the distillation process, guiding synthetic samples to gravitate towards the root-centric regions of the original data distribution while preserving their underlying geometric characteristics. Furthermore, we find that pruning in hyperbolic space requires only 20% of the distilled core set to retain model performance, while significantly improving training stability. Notably, HDD is seamlessly compatible with most existing DM methods, and extensive experiments on different datasets validate its effectiveness.
Abstract:Dataset distillation enables the training of deep neural networks with comparable performance in significantly reduced time by compressing large datasets into small and representative ones. Although the introduction of generative models has made great achievements in this field, the distributions of their distilled datasets are not diverse enough to represent the original ones, leading to a decrease in downstream validation accuracy. In this paper, we present a diversity-driven generative dataset distillation method based on a diffusion model to solve this problem. We introduce self-adaptive memory to align the distribution between distilled and real datasets, assessing the representativeness. The degree of alignment leads the diffusion model to generate more diverse datasets during the distillation process. Extensive experiments show that our method outperforms existing state-of-the-art methods in most situations, proving its ability to tackle dataset distillation tasks.
Abstract:Neighbor embedding is widely employed to visualize high-dimensional data; however, it frequently overlooks the global structure, e.g., intercluster similarities, thereby impeding accurate visualization. To address this problem, this paper presents Star-attracted Manifold Approximation and Projection (StarMAP), which incorporates the advantage of principal component analysis (PCA) in neighbor embedding. Inspired by the property of PCA embedding, which can be viewed as the largest shadow of the data, StarMAP introduces the concept of \textit{star attraction} by leveraging the PCA embedding. This approach yields faithful global structure preservation while maintaining the interpretability and computational efficiency of neighbor embedding. StarMAP was compared with existing methods in the visualization tasks of toy datasets, single-cell RNA sequencing data, and deep representation. The experimental results show that StarMAP is simple but effective in realizing faithful visualizations.
Abstract:We propose a novel continual self-supervised learning method (CSSL) considering medical domain knowledge in chest CT images. Our approach addresses the challenge of sequential learning by effectively capturing the relationship between previously learned knowledge and new information at different stages. By incorporating an enhanced DER into CSSL and maintaining both diversity and representativeness within the rehearsal buffer of DER, the risk of data interference during pretraining is reduced, enabling the model to learn more richer and robust feature representations. In addition, we incorporate a mixup strategy and feature distillation to further enhance the model's ability to learn meaningful representations. We validate our method using chest CT images obtained under two different imaging conditions, demonstrating superior performance compared to state-of-the-art methods.
Abstract:Dataset distillation is an effective technique for reducing the cost and complexity of model training while maintaining performance by compressing large datasets into smaller, more efficient versions. In this paper, we present a novel generative dataset distillation method that can improve the accuracy of aligning prediction logits. Our approach integrates self-knowledge distillation to achieve more precise distribution matching between the synthetic and original data, thereby capturing the overall structure and relationships within the data. To further improve the accuracy of alignment, we introduce a standardization step on the logits before performing distribution matching, ensuring consistency in the range of logits. Through extensive experiments, we demonstrate that our method outperforms existing state-of-the-art methods, resulting in superior distillation performance.
Abstract:Knowledge Graphs (KGs) represent relationships between entities in a graph structure and have been widely studied as promising tools for realizing recommendations that consider the accurate content information of items. However, traditional KG-based recommendation methods face fundamental challenges: insufficient consideration of temporal information and poor performance in cold-start scenarios. On the other hand, Large Language Models (LLMs) can be considered databases with a wealth of knowledge learned from the web data, and they have recently gained attention due to their potential application as recommendation systems. Although approaches that treat LLMs as recommendation systems can leverage LLMs' high recommendation literacy, their input token limitations make it impractical to consider the entire recommendation domain dataset and result in scalability issues. To address these challenges, we propose a LLM's Intuition-aware Knowledge graph Reasoning model (LIKR). Our main idea is to treat LLMs as reasoners that output intuitive exploration strategies for KGs. To integrate the knowledge of LLMs and KGs, we trained a recommendation agent through reinforcement learning using a reward function that integrates different recommendation strategies, including LLM's intuition and KG embeddings. By incorporating temporal awareness through prompt engineering and generating textual representations of user preferences from limited interactions, LIKR can improve recommendation performance in cold-start scenarios. Furthermore, LIKR can avoid scalability issues by using KGs to represent recommendation domain datasets and limiting the LLM's output to KG exploration strategies. Experiments on real-world datasets demonstrate that our model outperforms state-of-the-art recommendation methods in cold-start sequential recommendation scenarios.
Abstract:In few-shot action recognition~(FSAR), long sub-sequences of video naturally express entire actions more effectively. However, the computational complexity of mainstream Transformer-based methods limits their application. Recent Mamba demonstrates efficiency in modeling long sequences, but directly applying Mamba to FSAR overlooks the importance of local feature modeling and alignment. Moreover, long sub-sequences within the same class accumulate intra-class variance, which adversely impacts FSAR performance. To solve these challenges, we propose a \underline{\textbf{M}}atryoshka M\underline{\textbf{A}}mba and Co\underline{\textbf{N}}tras\underline{\textbf{T}}ive Le\underline{\textbf{A}}rning framework~(\textbf{Manta}). Firstly, the Matryoshka Mamba introduces multiple Inner Modules to enhance local feature representation, rather than directly modeling global features. An Outer Module captures dependencies of timeline between these local features for implicit temporal alignment. Secondly, a hybrid contrastive learning paradigm, combining both supervised and unsupervised methods, is designed to mitigate the negative effects of intra-class variance accumulation. The Matryoshka Mamba and the hybrid contrastive learning paradigm operate in parallel branches within Manta, enhancing Mamba for FSAR of long sub-sequence. Manta achieves new state-of-the-art performance on prominent benchmarks, including SSv2, Kinetics, UCF101, and HMDB51. Extensive empirical studies prove that Manta significantly improves FSAR of long sub-sequence from multiple perspectives. The code is released at https://github.com/wenbohuang1002/Manta.
Abstract:Conventional medical artificial intelligence (AI) models face barriers in clinical application and ethical issues owing to their inability to handle the privacy-sensitive characteristics of medical data. We present a novel personalized federated learning (pFL) method for medical visual question answering (VQA) models, addressing privacy reliability challenges in the medical domain. Our method introduces learnable prompts into a Transformer architecture to efficiently train it on diverse medical datasets without massive computational costs. Then we introduce a reliable client VQA model that incorporates Dempster-Shafer evidence theory to quantify uncertainty in predictions, enhancing the model's reliability. Furthermore, we propose a novel inter-client communication mechanism that uses maximum likelihood estimation to balance accuracy and uncertainty, fostering efficient integration of insights across clients.
Abstract:Dimensionality reduction (DR) offers a useful representation of complex high-dimensional data. Recent DR methods focus on hyperbolic geometry to derive a faithful low-dimensional representation of hierarchical data. However, existing methods are based on neighbor embedding, frequently ruining the continual relation of the hierarchies. This paper presents hyperboloid Gaussian process (GP) latent variable models (hGP-LVMs) to embed high-dimensional hierarchical data with implicit continuity via nonparametric estimation. We adopt generative modeling using the GP, which brings effective hierarchical embedding and executes ill-posed hyperparameter tuning. This paper presents three variants that employ original point, sparse point, and Bayesian estimations. We establish their learning algorithms by incorporating the Riemannian optimization and active approximation scheme of GP-LVM. For Bayesian inference, we further introduce the reparameterization trick to realize Bayesian latent variable learning. In the last part of this paper, we apply hGP-LVMs to several datasets and show their ability to represent high-dimensional hierarchies in low-dimensional spaces.
Abstract:We propose a new strategy called think twice before recognizing to improve fine-grained traffic sign recognition (TSR). Fine-grained TSR in the wild is difficult due to the complex road conditions, and existing approaches particularly struggle with cross-country TSR when data is lacking. Our strategy achieves effective fine-grained TSR by stimulating the multiple-thinking capability of large multimodal models (LMM). We introduce context, characteristic, and differential descriptions to design multiple thinking processes for the LMM. The context descriptions with center coordinate prompt optimization help the LMM to locate the target traffic sign in the original road images containing multiple traffic signs and filter irrelevant answers through the proposed prior traffic sign hypothesis. The characteristic description is based on few-shot in-context learning of template traffic signs, which decreases the cross-domain difference and enhances the fine-grained recognition capability of the LMM. The differential descriptions of similar traffic signs optimize the multimodal thinking capability of the LMM. The proposed method is independent of training data and requires only simple and uniform instructions. We conducted extensive experiments on three benchmark datasets and two real-world datasets from different countries, and the proposed method achieves state-of-the-art TSR results on all five datasets.