Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Traditional speech systems typically rely on separate, task-specific models for text-to-speech (TTS), automatic speech recognition (ASR), and voice conversion (VC), resulting in fragmented pipelines that limit scalability, efficiency, and cross-task generalization. In this paper, we present General-Purpose Audio (GPA), a unified audio foundation model that integrates multiple core speech tasks within a single large language model (LLM) architecture. GPA operates on a shared discrete audio token space and supports instruction-driven task induction, enabling a single autoregressive model to flexibly perform TTS, ASR, and VC without architectural modifications. This unified design combines a fully autoregressive formulation over discrete speech tokens, joint multi-task training across speech domains, and a scalable inference pipeline that achieves high concurrency and throughput. The resulting model family supports efficient multi-scale deployment, including a lightweight 0.3B-parameter variant optimized for edge and resource-constrained environments. Together, these design choices demonstrate that a unified autoregressive architecture can achieve competitive performance across diverse speech tasks while remaining viable for low-latency, practical deployment.
Technological developments have produced methods that can generate educational videos from input text or sound. Recently, the use of deep learning techniques for image and video generation has been widely explored, particularly in education. However, generating video content from conditional inputs such as text or speech remains a challenging area. In this paper, we introduce a novel method to the educational structure, Generative Adversarial Network (GAN), which develop frame-for-frame frameworks and are able to create full educational videos. The proposed system is structured into three main phases In the first phase, the input (either text or speech) is transcribed using speech recognition. In the second phase, key terms are extracted and relevant images are generated using advanced models such as CLIP and diffusion models to enhance visual quality and semantic alignment. In the final phase, the generated images are synthesized into a video format, integrated with either pre-recorded or synthesized sound, resulting in a fully interactive educational video. The proposed system is compared with other systems such as TGAN, MoCoGAN, and TGANS-C, achieving a Fréchet Inception Distance (FID) score of 28.75%, which indicates improved visual quality and better over existing methods.
We introduce a voice-agentic framework that learns one critical omni-understanding skill: knowing when to trust itself versus when to consult external audio perception. Our work is motivated by a crucial yet counterintuitive finding: naively fine-tuning an omni-model on both speech recognition and external sound understanding tasks often degrades performance, as the model can be easily misled by noisy hypotheses. To address this, our framework, Speech-Hands, recasts the problem as an explicit self-reflection decision. This learnable reflection primitive proves effective in preventing the model from being derailed by flawed external candidates. We show that this agentic action mechanism generalizes naturally from speech recognition to complex, multiple-choice audio reasoning. Across the OpenASR leaderboard, Speech-Hands consistently outperforms strong baselines by 12.1% WER on seven benchmarks. The model also achieves 77.37% accuracy and high F1 on audio QA decisions, showing robust generalization and reliability across diverse audio question answering datasets. By unifying perception and decision-making, our work offers a practical path toward more reliable and resilient audio intelligence.
With the rapid advancement of Multimodal Large Language Models (MLLMs), their potential has garnered significant attention in Chinese Classical Studies (CCS). While existing research has primarily focused on text and visual modalities, the audio corpus within this domain remains largely underexplored. To bridge this gap, we propose the Multi-task Classical Chinese Literary Genre Audio Corpus (MCGA). It encompasses a diverse range of literary genres across six tasks: Automatic Speech Recognition (ASR), Speech-to-Text Translation (S2TT), Speech Emotion Captioning (SEC), Spoken Question Answering (SQA), Speech Understanding (SU), and Speech Reasoning (SR). Through the evaluation of ten MLLMs, our experimental results demonstrate that current models still face substantial challenges when processed on the MCGA test set. Furthermore, we introduce an evaluation metric for SEC and a metric to measure the consistency between the speech and text capabilities of MLLMs. We release MCGA and our code to the public to facilitate the development of MLLMs with more robust multidimensional audio capabilities in CCS. MCGA Corpus: https://github.com/yxduir/MCGA
The recent surge in open-source Multimodal Large Language Models (MLLM) frameworks, such as LLaVA, provides a convenient kickoff for artificial intelligence developers and researchers. However, most of the MLLM frameworks take vision as the main input modality, and provide limited in-depth support for the modality of speech, audio, and music. This situation hinders the development of audio-language models, and forces researchers to spend a lot of effort on code writing and hyperparameter tuning. We present SLAM-LLM, an open-source deep learning framework designed to train customized MLLMs, focused on speech, language, audio, and music processing. SLAM-LLM provides a modular configuration of different encoders, projectors, LLMs, and parameter-efficient fine-tuning plugins. SLAM-LLM also includes detailed training and inference recipes for mainstream tasks, along with high-performance checkpoints like LLM-based Automatic Speech Recognition (ASR), Automated Audio Captioning (AAC), and Music Captioning (MC). Some of these recipes have already reached or are nearing state-of-the-art performance, and some relevant techniques have also been accepted by academic papers. We hope SLAM-LLM will accelerate iteration, development, data engineering, and model training for researchers. We are committed to continually pushing forward audio-based MLLMs through this open-source framework, and call on the community to contribute to the LLM-based speech, audio and music processing.
CAPTCHAs are widely used by websites to block bots and spam by presenting challenges that are easy for humans but difficult for automated programs to solve. To improve accessibility, audio CAPTCHAs are designed to complement visual ones. However, the robustness of audio CAPTCHAs against advanced Large Audio Language Models (LALMs) and Automatic Speech Recognition (ASR) models remains unclear. In this paper, we introduce AI-CAPTCHA, a unified framework that offers (i) an evaluation framework, ACEval, which includes advanced LALM- and ASR-based solvers, and (ii) a novel audio CAPTCHA approach, IllusionAudio, leveraging audio illusions. Through extensive evaluations of seven widely deployed audio CAPTCHAs, we show that most existing methods can be solved with high success rates by advanced LALMs and ASR models, exposing critical security weaknesses. To address these vulnerabilities, we design a new audio CAPTCHA approach, IllusionAudio, which exploits perceptual illusion cues rooted in human auditory mechanisms. Extensive experiments demonstrate that our method defeats all tested LALM- and ASR-based attacks while achieving a 100% human pass rate, significantly outperforming existing audio CAPTCHA methods.
In speech language modeling, two architectures dominate the frontier: the Transformer and the Conformer. However, it remains unknown whether their comparable performance stems from convergent processing strategies or distinct architectural inductive biases. We introduce Architectural Fingerprinting, a probing framework that isolates the effect of architecture on representation, and apply it to a controlled suite of 24 pre-trained encoders (39M-3.3B parameters). Our analysis reveals divergent hierarchies: Conformers implement a "Categorize Early" strategy, resolving phoneme categories 29% earlier in depth and speaker gender by 16% depth. In contrast, Transformers "Integrate Late," deferring phoneme, accent, and duration encoding to deep layers (49-57%). These fingerprints suggest design heuristics: Conformers' front-loaded categorization may benefit low-latency streaming, while Transformers' deep integration may favor tasks requiring rich context and cross-utterance normalization.
Despite having hundreds of millions of speakers, Chinese dialects lag behind Mandarin in speech and language technologies. Most varieties are primarily spoken, making dialect-to-Mandarin speech-LLMs (large language models) more practical than dialect LLMs. Building dialect-to-Mandarin speech-LLMs requires speech representations with cross-dialect semantic alignment between Chinese dialects and Mandarin. In this paper, we achieve such a cross-dialect semantic alignment by training a speech encoder with ASR (automatic speech recognition)-only data, as demonstrated by speech-to-speech retrieval on a new benchmark of spoken Chinese varieties that we contribute. Our speech encoder further demonstrates state-of-the-art ASR performance on Chinese dialects. Together, our Chinese dialect benchmark, semantically aligned speech representations, and speech-to-speech retrieval evaluation lay the groundwork for future Chinese dialect speech-LLMs. We release the benchmark at https://github.com/kalvinchang/yubao.
Although many Automatic Speech Recognition (ASR) systems have been developed for Modern Standard Arabic (MSA) and Dialectal Arabic (DA), few studies have focused on dialect-specific implementations, particularly for low-resource Arabic dialects such as Sudanese. This paper presents a comprehensive study of data augmentation techniques for fine-tuning OpenAI Whisper models and establishes the first benchmark for the Sudanese dialect. Two augmentation strategies are investigated: (1) self-training with pseudo-labels generated from unlabeled speech, and (2) TTS-based augmentation using synthetic speech from the Klaam TTS system. The best-performing model, Whisper-Medium fine-tuned with combined self-training and TTS augmentation (28.4 hours), achieves a Word Error Rate (WER) of 57.1% on the evaluation set and 51.6% on an out-of-domain holdout set substantially outperforming zero-shot multilingual Whisper (78.8% WER) and MSA-specialized Arabic models (73.8-123% WER). All experiments used low-cost resources (Kaggle free tier and Lightning.ai trial), demonstrating that strategic data augmentation can overcome resource limitations for low-resource dialects and provide a practical roadmap for developing ASR systems for low-resource Arabic dialects and other marginalized language varieties. The models, evaluation benchmarks, and reproducible training pipelines are publicly released to facilitate future research on low-resource Arabic ASR.
The development of resource-constrained approaches to automatic speech recognition (ASR) is of great interest due to its broad applicability to many low-resource languages for which there is scant usable data. Existing approaches to many low-resource natural language processing tasks leverage additional data from higher-resource languages that are closely related to a target low-resource language. One increasingly popular approach uses task arithmetic to combine models trained on different tasks to create a model for a task where there is little to no training data. In this paper, we consider training on a particular language to be a task, and we generate task vectors by fine-tuning variants of the Whisper ASR system. For pairings of high- and low-resource languages, we merge task vectors via a linear combination, optimizing the weights of the linear combination on the downstream word error rate on the low-resource target language's validation set. We find that this approach consistently improves performance on the target languages.