Sentiment analysis for the Bengali language has attracted increasing research interest in recent years. However, progress remains constrained by the scarcity of large-scale and diverse annotated datasets. Although several Bengali sentiment and hate speech datasets are publicly available, most are limited in size or confined to a single domain, such as social media comments. Consequently, these resources are often insufficient for training modern deep learning based models, which require large volumes of heterogeneous data to learn robust and generalizable representations. In this work, we introduce BengaliSent140, a large-scale Bengali binary sentiment dataset constructed by consolidating seven existing Bengali text datasets into a unified corpus. To ensure consistency across sources, heterogeneous annotation schemes are systematically harmonized into a binary sentiment formulation with two classes: Not Hate (0) and Hate (1). The resulting dataset comprises 139,792 unique text samples, including 68,548 hate and 71,244 not-hate instances, yielding a relatively balanced class distribution. By integrating data from multiple sources and domains, BengaliSent140 offers broader linguistic and contextual coverage than existing Bengali sentiment datasets and provides a strong foundation for training and benchmarking deep learning models. Baseline experimental results are also reported to demonstrate the practical usability of the dataset. The dataset is publicly available at https://www.kaggle.com/datasets/akifislam/bengalisent140/
Neural audio codecs provide promising acoustic features for speech synthesis, with representative streaming codecs like Mimi providing high-quality acoustic features for real-time Text-to-Speech (TTS) applications. However, Mimi's decoder, which employs a hybrid transformer and convolution architecture, introduces significant latency bottlenecks on edge devices due to the the compute intensive nature of deconvolution layers which are not friendly for mobile-CPUs, such as the most representative framework XNNPACK. This paper introduces T-Mimi, a novel modification of the Mimi codec decoder that replaces its convolutional components with a purely transformer-based decoder, inspired by the TS3-Codec architecture. This change dramatically reduces on-device TTS latency from 42.1ms to just 4.4ms. Furthermore, we conduct quantization aware training and derive a crucial finding: the final two transformer layers and the concluding linear layers of the decoder, which are close to the waveform, are highly sensitive to quantization and must be preserved at full precision to maintain audio quality.
Discrete Speech Representation Tokens (DSRTs) have become a foundational component in speech generation. While prior work has extensively studied phonetic and speaker information in DSRTs, how accent information is encoded in DSRTs remains largely unexplored. In this paper, we present the first systematic investigation of accent information in DSRTs. We propose a unified evaluation framework that measures both accessibility of accent information via a novel Accent ABX task and recoverability via cross-accent Voice Conversion (VC) resynthesis. Using this framework, we analyse DSRTs derived from a variety of speech encoders. Our results reveal that accent information is substantially reduced when ASR supervision is used to fine-tune the encoder, but cannot be effectively disentangled from phonetic and speaker information through naive codebook size reduction. Based on these findings, we propose new content-only and content-accent DSRTs that significantly outperform existing designs in controllable accent generation. Our work highlights the importance of accent-aware evaluation and provides practical guidance for designing DSRTs for accent-controlled speech generation.
Lipreading, the technology of decoding spoken content from silent videos of lip movements, holds significant application value in fields such as public security. However, due to the subtle nature of articulatory gestures, existing lipreading methods often suffer from limited feature discriminability and poor generalization capabilities. To address these challenges, this paper delves into the purification of visual features from temporal, spatial, and channel dimensions. We propose a novel method named Multi-Attention Lipreading Network(MA-LipNet). The core of MA-LipNet lies in its sequential application of three dedicated attention modules. Firstly, a \textit{Channel Attention (CA)} module is employed to adaptively recalibrate channel-wise features, thereby mitigating interference from less informative channels. Subsequently, two spatio-temporal attention modules with distinct granularities-\textit{Joint Spatial-Temporal Attention (JSTA)} and \textit{Separate Spatial-Temporal Attention (SSTA)}-are leveraged to suppress the influence of irrelevant pixels and video frames. The JSTA module performs a coarse-grained filtering by computing a unified weight map across the spatio-temporal dimensions, while the SSTA module conducts a more fine-grained refinement by separately modeling temporal and spatial attentions. Extensive experiments conducted on the CMLR and GRID datasets demonstrate that MA-LipNet significantly reduces the Character Error Rate (CER) and Word Error Rate (WER), validating its effectiveness and superiority over several state-of-the-art methods. Our work highlights the importance of multi-dimensional feature refinement for robust visual speech recognition.
Transformer-based architectures are the most used architectures in many deep learning fields like Natural Language Processing, Computer Vision or Speech processing. It may encourage the direct use of Transformers in the constrained tasks, without questioning whether it will yield the same benefits as in standard tasks. Given specific constraints, it is essential to evaluate the relevance of transformer models. This work questions the suitability of transformers for specific domains. We argue that the high computational requirements and latency issues associated with these models do not align well with streaming applications. Our study promotes the search for alternative strategies to improve efficiency without sacrificing performance. In light of this observation, our paper critically examines the usefulness of transformer architecture in such constrained environments. As a first attempt, we show that the computational cost for Streaming Automatic Speech Recognition (ASR) can be reduced using deformable convolution instead of Self-Attention. Furthermore, we show that Self-Attention mechanisms can be entirely removed and not replaced, without observing significant degradation in the Word Error Rate.
Speech Emotion Recognition systems often use static features like Mel-Frequency Cepstral Coefficients (MFCCs), Zero Crossing Rate (ZCR), and Root Mean Square Energy (RMSE). Because of this, they can misclassify emotions when there is acoustic noise in vocal signals. To address this, we added dynamic features using Dynamic Spectral features (Deltas and Delta-Deltas) along with the Kalman Smoothing algorithm. This approach reduces noise and improves emotion classification. Since emotion changes over time, the Kalman Smoothing filter also helped make the classifier outputs more stable. Tests on the RAVDESS dataset showed that this method achieved a state-of-the-art accuracy of 87\% and reduced misclassification between emotions with similar acoustic features
Large Language Model (LLM)-powered Automatic Speech Recognition (ASR) systems achieve strong performance with limited resources by linking a frozen speech encoder to a pretrained LLM via a lightweight connector. Prior work trains a separate connector per language, overlooking linguistic relatedness. We propose an efficient and novel connector-sharing strategy based on linguistic family membership, enabling one connector per family, and empirically validate its effectiveness across two multilingual LLMs and two real-world corpora spanning curated and crowd-sourced speech. Our results show that family-based connectors reduce parameter count while improving generalization across domains, offering a practical and scalable strategy for multilingual ASR deployment.
Decoding emotion from brain activity could unlock a deeper understanding of the human experience. While a number of existing datasets align brain data with speech and with speech transcripts, no datasets have annotated brain data with sentiment. To bridge this gap, we explore the use of pre-trained Text-to-Sentiment models to annotate non invasive brain recordings, acquired using magnetoencephalography (MEG), while participants listened to audiobooks. Having annotated the text, we employ force-alignment of the text and audio to align our sentiment labels with the brain recordings. It is straightforward then to train Brainto-Sentiment models on these data. Experimental results show an improvement in balanced accuracy for Brain-to-Sentiment compared to baseline, supporting the proposed approach as a proof-of-concept for leveraging existing MEG datasets and learning to decode sentiment directly from the brain.
Real-world audio recordings often contain multiple speakers and various degradations, which limit both the quantity and quality of speech data available for building state-of-the-art speech processing models. Although end-to-end approaches that concatenate speech enhancement (SE) and speech separation (SS) to obtain a clean speech signal for each speaker are promising, conventional SE-SS methods suffer from complex degradations beyond additive noise. To this end, we propose \textbf{Geneses}, a generative framework to achieve unified, high-quality SE--SS. Our Geneses leverages latent flow matching to estimate each speaker's clean speech features using multi-modal diffusion Transformer conditioned on self-supervised learning representation from noisy mixture. We conduct experimental evaluation using two-speaker mixtures from LibriTTS-R under two conditions: additive-noise-only and complex degradations. The results demonstrate that Geneses significantly outperforms a conventional mask-based SE--SS method across various objective metrics with high robustness against complex degradations. Audio samples are available in our demo page.
Generating holistic co-speech gestures that integrate full-body motion with facial expressions suffers from semantically incoherent coordination on body motion and spatially unstable meaningless movements due to existing part-decomposed or frame-level regression methods, We introduce 3DGesPolicy, a novel action-based framework that reformulates holistic gesture generation as a continuous trajectory control problem through diffusion policy from robotics. By modeling frame-to-frame variations as unified holistic actions, our method effectively learns inter-frame holistic gesture motion patterns and ensures both spatially and semantically coherent movement trajectories that adhere to realistic motion manifolds. To further bridge the gap in expressive alignment, we propose a Gesture-Audio-Phoneme (GAP) fusion module that can deeply integrate and refine multi-modal signals, ensuring structured and fine-grained alignment between speech semantics, body motion, and facial expressions. Extensive quantitative and qualitative experiments on the BEAT2 dataset demonstrate the effectiveness of our 3DGesPolicy across other state-of-the-art methods in generating natural, expressive, and highly speech-aligned holistic gestures.