Multi Agent Reinforcement Learning


Multi-agent reinforcement learning is the process of training multiple agents to interact and collaborate in a shared environment.

Learning Query-Specific Rubrics from Human Preferences for DeepResearch Report Generation

Add code
Feb 03, 2026
Viaarxiv icon

Spatiotemporal Decision Transformer for Traffic Coordination

Add code
Feb 02, 2026
Viaarxiv icon

Explicit Credit Assignment through Local Rewards and Dependence Graphs in Multi-Agent Reinforcement Learning

Add code
Jan 29, 2026
Viaarxiv icon

From Intents to Actions: Agentic AI in Autonomous Networks

Add code
Feb 01, 2026
Viaarxiv icon

FlowSteer: Interactive Agentic Workflow Orchestration via End-to-End Reinforcement Learning

Add code
Feb 02, 2026
Viaarxiv icon

Scaling In-Context Online Learning Capability of LLMs via Cross-Episode Meta-RL

Add code
Feb 03, 2026
Viaarxiv icon

Scaling Search-Augmented LLM Reasoning via Adaptive Information Control

Add code
Feb 02, 2026
Viaarxiv icon

Self-Compression of Chain-of-Thought via Multi-Agent Reinforcement Learning

Add code
Jan 29, 2026
Viaarxiv icon

RoboStriker: Hierarchical Decision-Making for Autonomous Humanoid Boxing

Add code
Jan 30, 2026
Viaarxiv icon

TRIP-Bench: A Benchmark for Long-Horizon Interactive Agents in Real-World Scenarios

Add code
Feb 02, 2026
Viaarxiv icon