Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Sep 05, 2025
Abstract:Automated Facial Beauty Prediction (FBP) is a challenging computer vision task due to the complex interplay of local and global facial features that influence human perception. While Convolutional Neural Networks (CNNs) excel at feature extraction, they often process information at a fixed scale, potentially overlooking the critical inter-dependencies between features at different levels of granularity. To address this limitation, we introduce the Scale-Interaction Transformer (SIT), a novel hybrid deep learning architecture that synergizes the feature extraction power of CNNs with the relational modeling capabilities of Transformers. The SIT first employs a multi-scale module with parallel convolutions to capture facial characteristics at varying receptive fields. These multi-scale representations are then framed as a sequence and processed by a Transformer encoder, which explicitly models their interactions and contextual relationships via a self-attention mechanism. We conduct extensive experiments on the widely-used SCUT-FBP5500 benchmark dataset, where the proposed SIT model establishes a new state-of-the-art. It achieves a Pearson Correlation of 0.9187, outperforming previous methods. Our findings demonstrate that explicitly modeling the interplay between multi-scale visual cues is crucial for high-performance FBP. The success of the SIT architecture highlights the potential of hybrid CNN-Transformer models for complex image regression tasks that demand a holistic, context-aware understanding.
Via

Sep 04, 2025
Abstract:Collimation in X-ray imaging restricts exposure to the region-of-interest (ROI) and minimizes the radiation dose applied to the patient. The detection of collimator shadows is an essential image-based preprocessing step in digital radiography posing a challenge when edges get obscured by scattered X-ray radiation. Regardless, the prior knowledge that collimation forms polygonal-shaped shadows is evident. For this reason, we introduce a deep learning-based segmentation that is inherently constrained to its geometry. We achieve this by incorporating a differentiable Hough transform-based network to detect the collimation borders and enhance its capability to extract the information about the ROI center. During inference, we combine the information of both tasks to enable the generation of refined, line-constrained segmentation masks. We demonstrate robust reconstruction of collimated regions achieving median Hausdorff distances of 4.3-5.0mm on diverse test sets of real Xray images. While this application involves at most four shadow borders, our method is not fundamentally limited by a specific number of edges.
Via

Sep 05, 2025
Abstract:Large reasoning models (LRMs) have exhibited strong performance on complex reasoning tasks, with further gains achievable through increased computational budgets at inference. However, current test-time scaling methods predominantly rely on redundant sampling, ignoring the historical experience utilization, thereby limiting computational efficiency. To overcome this limitation, we propose Sticker-TTS, a novel test-time scaling framework that coordinates three collaborative LRMs to iteratively explore and refine solutions guided by historical attempts. At the core of our framework are distilled key conditions-termed stickers-which drive the extraction, refinement, and reuse of critical information across multiple rounds of reasoning. To further enhance the efficiency and performance of our framework, we introduce a two-stage optimization strategy that combines imitation learning with self-improvement, enabling progressive refinement. Extensive evaluations on three challenging mathematical reasoning benchmarks, including AIME-24, AIME-25, and OlymMATH, demonstrate that Sticker-TTS consistently surpasses strong baselines, including self-consistency and advanced reinforcement learning approaches, under comparable inference budgets. These results highlight the effectiveness of sticker-guided historical experience utilization. Our code and data are available at https://github.com/RUCAIBox/Sticker-TTS.
* 11 pages, 1 figures, 5 tables
Via

Sep 05, 2025
Abstract:Estimating accurate and well-calibrated predictive uncertainty is important for enhancing the reliability of computer vision models, especially in safety-critical applications like traffic scene perception. While ensemble methods are commonly used to quantify uncertainty by combining multiple models, a mixture of experts (MoE) offers an efficient alternative by leveraging a gating network to dynamically weight expert predictions based on the input. Building on the promising use of MoEs for semantic segmentation in our previous works, we show that well-calibrated predictive uncertainty estimates can be extracted from MoEs without architectural modifications. We investigate three methods to extract predictive uncertainty estimates: predictive entropy, mutual information, and expert variance. We evaluate these methods for an MoE with two experts trained on a semantical split of the A2D2 dataset. Our results show that MoEs yield more reliable uncertainty estimates than ensembles in terms of conditional correctness metrics under out-of-distribution (OOD) data. Additionally, we evaluate routing uncertainty computed via gate entropy and find that simple gating mechanisms lead to better calibration of routing uncertainty estimates than more complex classwise gates. Finally, our experiments on the Cityscapes dataset suggest that increasing the number of experts can further enhance uncertainty calibration. Our code is available at https://github.com/KASTEL-MobilityLab/mixtures-of-experts/.
* Accepted for publication at the STREAM workshop at ICCV2025
Via

Sep 04, 2025
Abstract:Despite signi cant progress in semi-supervised medical image segmentation, most existing segmentation networks overlook e ective methodological guidance for feature extraction and important prior information from datasets. In this paper, we develop a semi-supervised medical image segmentation framework that e ectively integrates spatial regularization methods and volume priors. Speci cally, our approach integrates a strong explicit volume prior at the image scale and Threshold Dynamics spatial regularization, both derived from variational models, into the backbone segmentation network. The target region volumes for each unlabeled image are estimated by a regression network, which e ectively regularizes the backbone segmentation network through an image-scale Wasserstein distance constraint, ensuring that the class ratios in the segmentation results for each unlabeled image match those predicted by the regression network. Additionally, we design a dataset-scale Wasserstein distance loss function based on a weak implicit volume prior, which enforces that the volume distribution predicted for the unlabeled dataset is similar to that of labeled dataset. Experimental results on the 2017 ACDC dataset, PROMISE12 dataset, and thigh muscle MR image dataset show the superiority of the proposed method.
Via

Sep 05, 2025
Abstract:Recently, Mamba-based methods, with its advantage in long-range information modeling and linear complexity, have shown great potential in optimizing both computational cost and performance of light field image super-resolution (LFSR). However, current multi-directional scanning strategies lead to inefficient and redundant feature extraction when applied to complex LF data. To overcome this challenge, we propose a Subspace Simple Scanning (Sub-SS) strategy, based on which we design the Subspace Simple Mamba Block (SSMB) to achieve more efficient and precise feature extraction. Furthermore, we propose a dual-stage modeling strategy to address the limitation of state space in preserving spatial-angular and disparity information, thereby enabling a more comprehensive exploration of non-local spatial-angular correlations. Specifically, in stage I, we introduce the Spatial-Angular Residual Subspace Mamba Block (SA-RSMB) for shallow spatial-angular feature extraction; in stage II, we use a dual-branch parallel structure combining the Epipolar Plane Mamba Block (EPMB) and Epipolar Plane Transformer Block (EPTB) for deep epipolar feature refinement. Building upon meticulously designed modules and strategies, we introduce a hybrid Mamba-Transformer framework, termed LFMT. LFMT integrates the strengths of Mamba and Transformer models for LFSR, enabling comprehensive information exploration across spatial, angular, and epipolar-plane domains. Experimental results demonstrate that LFMT significantly outperforms current state-of-the-art methods in LFSR, achieving substantial improvements in performance while maintaining low computational complexity on both real-word and synthetic LF datasets.
Via

Sep 04, 2025
Abstract:In this paper, we introduce Technical-Embeddings, a novel framework designed to optimize semantic retrieval in technical documentation, with applications in both hardware and software development. Our approach addresses the challenges of understanding and retrieving complex technical content by leveraging the capabilities of Large Language Models (LLMs). First, we enhance user queries by generating expanded representations that better capture user intent and improve dataset diversity, thereby enriching the fine-tuning process for embedding models. Second, we apply summary extraction techniques to encode essential contextual information, refining the representation of technical documents. To further enhance retrieval performance, we fine-tune a bi-encoder BERT model using soft prompting, incorporating separate learning parameters for queries and document context to capture fine-grained semantic nuances. We evaluate our approach on two public datasets, RAG-EDA and Rust-Docs-QA, demonstrating that Technical-Embeddings significantly outperforms baseline models in both precision and recall. Our findings highlight the effectiveness of integrating query expansion and contextual summarization to enhance information access and comprehension in technical domains. This work advances the state of Retrieval-Augmented Generation (RAG) systems, offering new avenues for efficient and accurate technical document retrieval in engineering and product development workflows.
Via

Sep 05, 2025
Abstract:Multimodal relation extraction (MRE) is a crucial task in the fields of Knowledge Graph and Multimedia, playing a pivotal role in multimodal knowledge graph construction. However, existing methods are typically limited to extracting a single type of relational triplet, which restricts their ability to extract triplets beyond the specified types. Directly combining these methods fails to capture dynamic cross-modal interactions and introduces significant computational redundancy. Therefore, we propose a novel \textit{unified multimodal Relation Extraction framework with Multilevel Optimal Transport and mixture-of-Experts}, termed REMOTE, which can simultaneously extract intra-modal and inter-modal relations between textual entities and visual objects. To dynamically select optimal interaction features for different types of relational triplets, we introduce mixture-of-experts mechanism, ensuring the most relevant modality information is utilized. Additionally, considering that the inherent property of multilayer sequential encoding in existing encoders often leads to the loss of low-level information, we adopt a multilevel optimal transport fusion module to preserve low-level features while maintaining multilayer encoding, yielding more expressive representations. Correspondingly, we also create a Unified Multimodal Relation Extraction (UMRE) dataset to evaluate the effectiveness of our framework, encompassing diverse cases where the head and tail entities can originate from either text or image. Extensive experiments show that REMOTE effectively extracts various types of relational triplets and achieves state-of-the-art performanc on almost all metrics across two other public MRE datasets. We release our resources at https://github.com/Nikol-coder/REMOTE.
* ACM MM 2025
Via

Sep 05, 2025
Abstract:While supervised quality predictors for synthesized speech have demonstrated strong correlations with human ratings, their requirement for in-domain labeled training data hinders their generalization ability to new domains. Unsupervised approaches based on pretrained self-supervised learning (SSL) based models and automatic speech recognition (ASR) models are a promising alternative; however, little is known about how these models encode information about speech quality. Towards the goal of better understanding how different aspects of speech quality are encoded in a multilingual setting, we present a layer-wise analysis of multilingual pretrained speech models based on reference modeling. We find that features extracted from early SSL layers show correlations with human ratings of synthesized speech, and later layers of ASR models can predict quality of non-neural systems as well as intelligibility. We also demonstrate the importance of using well-matched reference data.
* Copyright 2025 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works
Via

Sep 04, 2025
Abstract:Existing RGB-Event detection methods process the low-information regions of both modalities (background in images and non-event regions in event data) uniformly during feature extraction and fusion, resulting in high computational costs and suboptimal performance. To mitigate the computational redundancy during feature extraction, researchers have respectively proposed token sparsification methods for the image and event modalities. However, these methods employ a fixed number or threshold for token selection, hindering the retention of informative tokens for samples with varying complexity. To achieve a better balance between accuracy and efficiency, we propose FocusMamba, which performs adaptive collaborative sparsification of multimodal features and efficiently integrates complementary information. Specifically, an Event-Guided Multimodal Sparsification (EGMS) strategy is designed to identify and adaptively discard low-information regions within each modality by leveraging scene content changes perceived by the event camera. Based on the sparsification results, a Cross-Modality Focus Fusion (CMFF) module is proposed to effectively capture and integrate complementary features from both modalities. Experiments on the DSEC-Det and PKU-DAVIS-SOD datasets demonstrate that the proposed method achieves superior performance in both accuracy and efficiency compared to existing methods. The code will be available at https://github.com/Zizzzzzzz/FocusMamba.
Via
