Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
The advancement of speech technology has predominantly favored high-resource languages, creating a significant digital divide for speakers of most Sub-Saharan African languages. To address this gap, we introduce WAXAL, a large-scale, openly accessible speech dataset for 21 languages representing over 100 million speakers. The collection consists of two main components: an Automated Speech Recognition (ASR) dataset containing approximately 1,250 hours of transcribed, natural speech from a diverse range of speakers, and a Text-to-Speech (TTS) dataset with over 180 hours of high-quality, single-speaker recordings reading phonetically balanced scripts. This paper details our methodology for data collection, annotation, and quality control, which involved partnerships with four African academic and community organizations. We provide a detailed statistical overview of the dataset and discuss its potential limitations and ethical considerations. The WAXAL datasets are released at https://huggingface.co/datasets/google/WaxalNLP under the permissive CC-BY-4.0 license to catalyze research, enable the development of inclusive technologies, and serve as a vital resource for the digital preservation of these languages.
Recent speech foundation models excel at multilingual automatic speech recognition (ASR) for high-resource languages, but adapting them to low-resource languages remains challenging due to data scarcity and efficiency constraints. Full-model fine-tuning is computationally expensive and prone to overfitting, while parameter-efficient methods like LoRA apply adaptation uniformly across layers, overlooking internal representations thus compromising effectiveness and efficiency. We analyze multilingual ASR models and reveal a U-shaped adaptability pattern: early and late layers are language-specific and require more adaptation, while intermediate layers retain shared semantics and need less. Building on this observation, we propose DAMA, a Depth-Aware Model Adaptation framework that allocates adaptation capacity according to each layer's role. DAMA also introduces Singular Value Decomposition (SVD)-based initialization to constrain adaptation and preserve the U-shaped pattern, as well as a frozen middle-layer basis for further efficiency. Evaluated on 18 low-resource languages across two benchmark datasets, DAMA matches or surpasses state-of-the-art accuracy with 80% fewer trainable parameters, achieves a 29% error reduction under extreme data scarcity, and significantly improves memory, training time, and computational efficiency over baselines. These results highlight the benefits of structure-aware adaptation for efficient, scalable multilingual ASR.
This work presents EmoAra, an end-to-end emotion-preserving pipeline for cross-lingual spoken communication, motivated by banking customer service where emotional context affects service quality. EmoAra integrates Speech Emotion Recognition, Automatic Speech Recognition, Machine Translation, and Text-to-Speech to process English speech and deliver an Arabic spoken output while retaining emotional nuance. The system uses a CNN-based emotion classifier, Whisper for English transcription, a fine-tuned MarianMT model for English-to-Arabic translation, and MMS-TTS-Ara for Arabic speech synthesis. Experiments report an F1-score of 94% for emotion classification, translation performance of BLEU 56 and BERTScore F1 88.7%, and an average human evaluation score of 81% on banking-domain translations. The implementation and resources are available at the accompanying GitHub repository.
We present DementiaBank-Emotion, the first multi-rater emotion annotation corpus for Alzheimer's disease (AD) speech. Annotating 1,492 utterances from 108 speakers for Ekman's six basic emotions and neutral, we find that AD patients express significantly more non-neutral emotions (16.9%) than healthy controls (5.7%; p < .001). Exploratory acoustic analysis suggests a possible dissociation: control speakers showed substantial F0 modulation for sadness (Delta = -3.45 semitones from baseline), whereas AD speakers showed minimal change (Delta = +0.11 semitones; interaction p = .023), though this finding is based on limited samples (sadness: n=5 control, n=15 AD) and requires replication. Within AD speech, loudness differentiates emotion categories, indicating partially preserved emotion-prosody mappings. We release the corpus, annotation guidelines, and calibration workshop materials to support research on emotion recognition in clinical populations.
Despite strong performance in data-rich regimes, deep learning often underperforms in the data-scarce settings common in practice. While foundation models (FMs) trained on massive datasets demonstrate strong generalization by extracting general-purpose features, they can still suffer from scarce labeled data during downstream fine-tuning. To address this, we propose GeLDA, a semantics-aware generative latent data augmentation framework that leverages conditional diffusion models to synthesize samples in an FM-induced latent space. Because this space is low-dimensional and concentrates task-relevant information compared to the input space, GeLDA enables efficient, high-quality data generation. GeLDA conditions generation on auxiliary feature vectors that capture semantic relationships among classes or subdomains, facilitating data augmentation in low-resource domains. We validate GeLDA in two large-scale recognition tasks: (a) in zero-shot language-specific speech emotion recognition, GeLDA improves the Whisper-large baseline's unweighted average recall by 6.13%; and (b) in long-tailed image classification, it achieves 74.7% tail-class accuracy on ImageNet-LT, setting a new state-of-the-art result.
Spoken question-answering (SQA) systems relying on automatic speech recognition (ASR) often struggle with accurately recognizing medical terminology. To this end, we propose MedSpeak, a novel knowledge graph-aided ASR error correction framework that refines noisy transcripts and improves downstream answer prediction by leveraging both semantic relationships and phonetic information encoded in a medical knowledge graph, together with the reasoning power of LLMs. Comprehensive experimental results on benchmarks demonstrate that MedSpeak significantly improves the accuracy of medical term recognition and overall medical SQA performance, establishing MedSpeak as a state-of-the-art solution for medical SQA. The code is available at https://github.com/RainieLLM/MedSpeak.
The digitization of agricultural advisory services in India requires robust Automatic Speech Recognition (ASR) systems capable of accurately transcribing domain-specific terminology in multiple Indian languages. This paper presents a benchmarking framework for evaluating ASR performance in agricultural contexts across Hindi, Telugu, and Odia languages. We introduce evaluation metrics including Agriculture Weighted Word Error Rate (AWWER) and domain-specific utility scoring to complement traditional metrics. Our evaluation of 10,934 audio recordings, each transcribed by up to 10 ASR models, reveals performance variations across languages and models, with Hindi achieving the best overall performance (WER: 16.2%) while Odia presents the greatest challenges (best WER: 35.1%, achieved only with speaker diarization). We characterize audio quality challenges inherent to real-world agricultural field recordings and demonstrate that speaker diarization with best-speaker selection can substantially reduce WER for multi-speaker recordings (upto 66% depending on the proportion of multi-speaker audio). We identify recurring error patterns in agricultural terminology and provide practical recommendations for improving ASR systems in low-resource agricultural domains. The study establishes baseline benchmarks for future agricultural ASR development.
Emotion recognition from human speech is a critical enabler for socially aware conversational AI. However, while most prior work frames emotion recognition as a categorical classification problem, real-world affective states are often ambiguous, overlapping, and context-dependent, posing significant challenges for both annotation and automatic modeling. Recent large-scale audio language models (ALMs) offer new opportunities for nuanced affective reasoning without explicit emotion supervision, but their capacity to handle ambiguous emotions remains underexplored. At the same time, advances in inference-time techniques such as test-time scaling (TTS) have shown promise for improving generalization and adaptability in hard NLP tasks, but their relevance to affective computing is still largely unknown. In this work, we introduce the first benchmark for ambiguous emotion recognition in speech with ALMs under test-time scaling. Our evaluation systematically compares eight state-of-the-art ALMs and five TTS strategies across three prominent speech emotion datasets. We further provide an in-depth analysis of the interaction between model capacity, TTS, and affective ambiguity, offering new insights into the computational and representational challenges of ambiguous emotion understanding. Our benchmark establishes a foundation for developing more robust, context-aware, and emotionally intelligent speech-based AI systems, and highlights key future directions for bridging the gap between model assumptions and the complexity of real-world human emotion.
Recent advances have demonstrated the potential of decoderonly large language models (LLMs) for automatic speech recognition (ASR). However, enabling streaming recognition within this framework remains a challenge. In this work, we propose a novel streaming ASR approach that integrates a read/write policy network with monotonic chunkwise attention (MoChA) to dynamically segment speech embeddings. These segments are interleaved with label sequences during training, enabling seamless integration with the LLM. During inference, the audio stream is buffered until the MoChA module triggers a read signal, at which point the buffered segment together with the previous token is fed into the LLM for the next token prediction. We also introduce a minimal-latency training objective to guide the policy network toward accurate segmentation boundaries. Furthermore, we adopt a joint training strategy in which a non-streaming LLM-ASR model and our streaming model share parameters. Experiments on the AISHELL-1 and AISHELL-2 Mandarin benchmarks demonstrate that our method consistently outperforms recent streaming ASR baselines, achieving character error rates of 5.1% and 5.5%, respectively. The latency optimization results in a 62.5% reduction in average token generation delay with negligible impact on recognition accuracy
While Automatic Speech Recognition (ASR) is typically benchmarked by word error rate (WER), real-world applications ultimately hinge on semantic fidelity. This mismatch is particularly problematic for dysarthric speech, where articulatory imprecision and disfluencies can cause severe semantic distortions. To bridge this gap, we introduce a Large Language Model (LLM)-based agent for post-ASR correction: a Judge-Editor over the top-k ASR hypotheses that keeps high-confidence spans, rewrites uncertain segments, and operates in both zero-shot and fine-tuned modes. In parallel, we release SAP-Hypo5, the largest benchmark for dysarthric speech correction, to enable reproducibility and future exploration. Under multi-perspective evaluation, our agent achieves a 14.51% WER reduction alongside substantial semantic gains, including a +7.59 pp improvement in MENLI and +7.66 pp in Slot Micro F1 on challenging samples. Our analysis further reveals that WER is highly sensitive to domain shift, whereas semantic metrics correlate more closely with downstream task performance.