Text classification is the process of categorizing text documents into predefined categories or labels.
Synthetic Aperture Radar (SAR) has emerged as a crucial imaging modality due to its all-weather capabilities. While recent advancements in self-supervised learning and Masked Image Modeling (MIM) have paved the way for SAR foundation models, these approaches primarily focus on low-level visual features, often overlooking multimodal alignment and zero-shot target recognition within SAR imagery. To address this limitation, we construct SARCLIP-1M, a large-scale vision language dataset comprising over one million text-image pairs aggregated from existing datasets. We further introduce SARCLIP, the first vision language foundation model tailored for the SAR domain. Our SARCLIP model is trained using a contrastive vision language learning approach by domain transferring strategy, enabling it to bridge the gap between SAR imagery and textual descriptions. Extensive experiments on image-text retrieval and zero-shot classification tasks demonstrate the superior performance of SARCLIP in feature extraction and interpretation, significantly outperforming state-of-the-art foundation models and advancing the semantic understanding of SAR imagery. The code and datasets will be released soon.




Large annotated datasets are essential for training robust Computer-Aided Diagnosis (CAD) models for breast cancer detection or risk prediction. However, acquiring such datasets with fine-detailed annotation is both costly and time-consuming. Vision-Language Models (VLMs), such as CLIP, which are pre-trained on large image-text pairs, offer a promising solution by enhancing robustness and data efficiency in medical imaging tasks. This paper introduces a novel Multi-View Mammography and Language Model for breast cancer classification and risk prediction, trained on a dataset of paired mammogram images and synthetic radiology reports. Our MV-MLM leverages multi-view supervision to learn rich representations from extensive radiology data by employing cross-modal self-supervision across image-text pairs. This includes multiple views and the corresponding pseudo-radiology reports. We propose a novel joint visual-textual learning strategy to enhance generalization and accuracy performance over different data types and tasks to distinguish breast tissues or cancer characteristics(calcification, mass) and utilize these patterns to understand mammography images and predict cancer risk. We evaluated our method on both private and publicly available datasets, demonstrating that the proposed model achieves state-of-the-art performance in three classification tasks: (1) malignancy classification, (2) subtype classification, and (3) image-based cancer risk prediction. Furthermore, the model exhibits strong data efficiency, outperforming existing fully supervised or VLM baselines while trained on synthetic text reports and without the need for actual radiology reports.




Text-to-audio models are a type of generative model that produces audio output in response to a given textual prompt. Although level generators and the properties of the functional content that they create (e.g., playability) dominate most discourse in procedurally generated content (PCG), games that emotionally resonate with players tend to weave together a range of creative and multimodal content (e.g., music, sounds, visuals, narrative tone), and multimodal models have begun seeing at least experimental use for this purpose. However, it remains unclear what exactly such models generate, and with what degree of variability and fidelity: audio is an extremely broad class of output for a generative system to target. Within the PCG community, expressive range analysis (ERA) has been used as a quantitative way to characterize generators' output space, especially for level generators. This paper adapts ERA to text-to-audio models, making the analysis tractable by looking at the expressive range of outputs for specific, fixed prompts. Experiments are conducted by prompting the models with several standardized prompts derived from the Environmental Sound Classification (ESC-50) dataset. The resulting audio is analyzed along key acoustic dimensions (e.g., pitch, loudness, and timbre). More broadly, this paper offers a framework for ERA-based exploratory evaluation of generative audio models.
We study LLMs for tabular prediction with mixed text, numeric, and categorical fields. We introduce TabGemma, a schema-agnostic in-context learner that treats rows as sequences and tackles two practical hurdles when adapting pretrained LLMs for tabular predictions: unstable numeric tokenization and limited context size. We propose to canonicalize numbers via signed scientific notation and continue pretraining of a 12B Gemma 3 model with a target imputation objective using a large-scale real world dataset. For inference, we use a compact n-gram-based retrieval to select informative exemplars that fit within a 128k-token window. On semantically rich benchmarks, TabGemma establishes a new state of the art on classification across low- and high-data regimes and improves monotonically with more context rows. For regression, it is competitive at small sample sizes but trails conventional approaches as data grows. Our results show that LLMs can be effective tabular in-context learners on highly semantic tasks when paired with dedicated numeric handling and context retrieval, while motivating further advances in numeric modeling and long-context scaling.
Diacritics restoration in Hebrew is a fundamental task for ensuring accurate word pronunciation and disambiguating textual meaning. Despite the language's high degree of ambiguity when unvocalized, recent machine learning approaches have significantly advanced performance on this task. In this work, we present DIVRIT, a novel system for Hebrew diacritization that frames the task as a zero-shot classification problem. Our approach operates at the word level, selecting the most appropriate diacritization pattern for each undiacritized word from a dynamically generated candidate set, conditioned on the surrounding textual context. A key innovation of DIVRIT is its use of a Hebrew Visual Language Model, which processes undiacritized text as an image, allowing diacritic information to be embedded directly within the input's vector representation. Through a comprehensive evaluation across various configurations, we demonstrate that the system effectively performs diacritization without relying on complex, explicit linguistic analysis. Notably, in an ``oracle'' setting where the correct diacritized form is guaranteed to be among the provided candidates, DIVRIT achieves a high level of accuracy. Furthermore, strategic architectural enhancements and optimized training methodologies yield significant improvements in the system's overall generalization capabilities. These findings highlight the promising potential of visual representations for accurate and automated Hebrew diacritization.




Electrocardiogram (ECG) interpretation is essential for cardiovascular disease diagnosis, but current automated systems often struggle with transparency and generalization to unseen conditions. To address this, we introduce ZETA, a zero-shot multimodal framework designed for interpretable ECG diagnosis aligned with clinical workflows. ZETA uniquely compares ECG signals against structured positive and negative clinical observations, which are curated through an LLM-assisted, expert-validated process, thereby mimicking differential diagnosis. Our approach leverages a pre-trained multimodal model to align ECG and text embeddings without disease-specific fine-tuning. Empirical evaluations demonstrate ZETA's competitive zero-shot classification performance and, importantly, provide qualitative and quantitative evidence of enhanced interpretability, grounding predictions in specific, clinically relevant positive and negative diagnostic features. ZETA underscores the potential of aligning ECG analysis with structured clinical knowledge for building more transparent, generalizable, and trustworthy AI diagnostic systems. We will release the curated observation dataset and code to facilitate future research.
Linguistic Landscape (LL) research traditionally relies on manual photography and annotation of public signages to examine distribution of languages in urban space. While such methods yield valuable findings, the process is time-consuming and difficult for large study areas. This study explores the use of AI powered language detection method to automate LL analysis. Using Honolulu Chinatown as a case study, we constructed a georeferenced photo dataset of 1,449 images collected by researchers and applied AI for optical character recognition (OCR) and language classification. We also conducted manual validations for accuracy checking. This model achieved an overall accuracy of 79%. Five recurring types of mislabeling were identified, including distortion, reflection, degraded surface, graffiti, and hallucination. The analysis also reveals that the AI model treats all regions of an image equally, detecting peripheral or background texts that human interpreters typically ignore. Despite these limitations, the results demonstrate the potential of integrating AI-assisted workflows into LL research to reduce such time-consuming processes. However, due to all the limitations and mis-labels, we recognize that AI cannot be fully trusted during this process. This paper encourages a hybrid approach combining AI automation with human validation for a more reliable and efficient workflow.




Modality alignment is critical for vision-language models (VLMs) to effectively integrate information across modalities. However, existing methods extract hierarchical features from text while representing each image with a single feature, leading to asymmetric and suboptimal alignment. To address this, we propose Alignment across Trees, a method that constructs and aligns tree-like hierarchical features for both image and text modalities. Specifically, we introduce a semantic-aware visual feature extraction framework that applies a cross-attention mechanism to visual class tokens from intermediate Transformer layers, guided by textual cues to extract visual features with coarse-to-fine semantics. We then embed the feature trees of the two modalities into hyperbolic manifolds with distinct curvatures to effectively model their hierarchical structures. To align across the heterogeneous hyperbolic manifolds with different curvatures, we formulate a KL distance measure between distributions on heterogeneous manifolds, and learn an intermediate manifold for manifold alignment by minimizing the distance. We prove the existence and uniqueness of the optimal intermediate manifold. Experiments on taxonomic open-set classification tasks across multiple image datasets demonstrate that our method consistently outperforms strong baselines under few-shot and cross-domain settings.
We introduce GigaEmbeddings, a novel framework for training high-performance Russian-focused text embeddings through hierarchical instruction tuning of the decoder-only LLM designed specifically for Russian language (GigaChat-3B). Our three-stage pipeline, comprising large-scale contrastive pre-training in web-scale corpora, fine-tuning with hard negatives, and multitask generalization across retrieval, classification, and clustering tasks, addresses key limitations of existing methods by unifying diverse objectives and leveraging synthetic data generation. Architectural innovations include bidirectional attention for contextual modeling, latent attention pooling for robust sequence aggregation, and strategic pruning of 25% of transformer layers to enhance efficiency without compromising performance. Evaluated on the ruMTEB benchmark spanning 23 multilingual tasks, GigaEmbeddings achieves state-of-the-art results (69.1 avg. score), outperforming strong baselines with a larger number of parameters.




Accurate symptom-to-disease classification and clinically grounded treatment recommendations remain challenging, particularly in heterogeneous patient settings with high diagnostic risk. Existing large language model (LLM)-based systems often lack medical grounding and fail to quantify uncertainty, resulting in unsafe outputs. We propose CLIN-LLM, a safety-constrained hybrid pipeline that integrates multimodal patient encoding, uncertainty-calibrated disease classification, and retrieval-augmented treatment generation. The framework fine-tunes BioBERT on 1,200 clinical cases from the Symptom2Disease dataset and incorporates Focal Loss with Monte Carlo Dropout to enable confidence-aware predictions from free-text symptoms and structured vitals. Low-certainty cases (18%) are automatically flagged for expert review, ensuring human oversight. For treatment generation, CLIN-LLM employs Biomedical Sentence-BERT to retrieve top-k relevant dialogues from the 260,000-sample MedDialog corpus. The retrieved evidence and patient context are fed into a fine-tuned FLAN-T5 model for personalized treatment generation, followed by post-processing with RxNorm for antibiotic stewardship and drug-drug interaction (DDI) screening. CLIN-LLM achieves 98% accuracy and F1 score, outperforming ClinicalBERT by 7.1% (p < 0.001), with 78% top-5 retrieval precision and a clinician-rated validity of 4.2 out of 5. Unsafe antibiotic suggestions are reduced by 67% compared to GPT-5. These results demonstrate CLIN-LLM's robustness, interpretability, and clinical safety alignment. The proposed system provides a deployable, human-in-the-loop decision support framework for resource-limited healthcare environments. Future work includes integrating imaging and lab data, multilingual extensions, and clinical trial validation.