Text classification is the process of categorizing text documents into predefined categories or labels.
Multimodal foundation models, such as GPT-4o, have recently made remarkable progress, but it is not clear where exactly these models stand in terms of understanding vision. In this paper, we benchmark the performance of popular multimodal foundation models (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmentation, object detection, image classification, depth and surface normal prediction) using established datasets (e.g., COCO, ImageNet and its variants, etc). The main challenges to performing this are: 1) most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and 2) many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these challenges by translating standard vision tasks into equivalent text-promptable and API-compatible tasks via prompt chaining to create a standardized benchmarking framework. We observe that 1) the models are not close to the state-of-the-art specialist models at any task. However, 2) they are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. 3) They perform semantic tasks notably better than geometric ones. 4) While the prompt-chaining techniques affect performance, better models exhibit less sensitivity to prompt variations. 5) GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks, 6) reasoning models, e.g. o3, show improvements in geometric tasks, and 7) a preliminary analysis of models with native image generation, like the latest GPT-4o, shows they exhibit quirks like hallucinations and spatial misalignments.
We develop a unified platform to evaluate Ideal, Linear, and Non-linear $\text{Pr}_{0.7}\text{Ca}_{0.3}\text{MnO}_{3}$ memristor-based synapse models, each getting progressively closer to hardware realism, alongside four STDP learning rules in a two-layer SNN with LIF neurons and adaptive thresholds for five-class MNIST classification. On MNIST with small train set and large test set, our two-layer SNN with ideal, 25-state, and 12-state nonlinear memristor synapses achieves 92.73 %, 91.07 %, and 80 % accuracy, respectively, while converging faster and using fewer parameters than comparable ANN/CNN baselines.
Phishing attacks remain a significant threat to modern cybersecurity, as they successfully deceive both humans and the defense mechanisms intended to protect them. Traditional detection systems primarily focus on email metadata that users cannot see in their inboxes. Additionally, these systems struggle with phishing emails, which experienced users can often identify empirically by the text alone. This paper investigates the practical potential of Large Language Models (LLMs) to detect these emails by focusing on their intent. In addition to the binary classification of phishing emails, the paper introduces an intent-type taxonomy, which is operationalized by the LLMs to classify emails into distinct categories and, therefore, generate actionable threat information. To facilitate our work, we have curated publicly available datasets into a custom dataset containing a mix of legitimate and phishing emails. Our results demonstrate that existing LLMs are capable of detecting and categorizing phishing emails, underscoring their potential in this domain.
3D visual grounding (3DVG) is a critical task in scene understanding that aims to identify objects in 3D scenes based on text descriptions. However, existing methods rely on separately pre-trained vision and text encoders, resulting in a significant gap between the two modalities in terms of spatial geometry and semantic categories. This discrepancy often causes errors in object positioning and classification. The paper proposes UniSpace-3D, which innovatively introduces a unified representation space for 3DVG, effectively bridging the gap between visual and textual features. Specifically, UniSpace-3D incorporates three innovative designs: i) a unified representation encoder that leverages the pre-trained CLIP model to map visual and textual features into a unified representation space, effectively bridging the gap between the two modalities; ii) a multi-modal contrastive learning module that further reduces the modality gap; iii) a language-guided query selection module that utilizes the positional and semantic information to identify object candidate points aligned with textual descriptions. Extensive experiments demonstrate that UniSpace-3D outperforms baseline models by at least 2.24% on the ScanRefer and Nr3D/Sr3D datasets. The code will be made available upon acceptance of the paper.
This study addresses the problem of authorship attribution for Romanian texts using the ROST corpus, a standard benchmark in the field. We systematically evaluate six machine learning techniques: Support Vector Machine (SVM), Logistic Regression (LR), k-Nearest Neighbors (k-NN), Decision Trees (DT), Random Forests (RF), and Artificial Neural Networks (ANN), employing character n-gram features for classification. Among these, the ANN model achieved the highest performance, including perfect classification in four out of fifteen runs when using 5-gram features. These results demonstrate that lightweight, interpretable character n-gram approaches can deliver state-of-the-art accuracy for Romanian authorship attribution, rivaling more complex methods. Our findings highlight the potential of simple stylometric features in resource, constrained or under-studied language settings.
Matching job titles is a highly relevant task in the computational job market domain, as it improves e.g., automatic candidate matching, career path prediction, and job market analysis. Furthermore, aligning job titles to job skills can be considered an extension to this task, with similar relevance for the same downstream tasks. In this report, we outline NLPnorth's submission to TalentCLEF 2025, which includes both of these tasks: Multilingual Job Title Matching, and Job Title-Based Skill Prediction. For both tasks we compare (fine-tuned) classification-based, (fine-tuned) contrastive-based, and prompting methods. We observe that for Task A, our prompting approach performs best with an average of 0.492 mean average precision (MAP) on test data, averaged over English, Spanish, and German. For Task B, we obtain an MAP of 0.290 on test data with our fine-tuned classification-based approach. Additionally, we made use of extra data by pulling all the language-specific titles and corresponding \emph{descriptions} from ESCO for each job and skill. Overall, we find that the largest multilingual language models perform best for both tasks. Per the provisional results and only counting the unique teams, the ranking on Task A is 5$^{\text{th}}$/20 and for Task B 3$^{\text{rd}}$/14.
Ensuring the moral reasoning capabilities of Large Language Models (LLMs) is a growing concern as these systems are used in socially sensitive tasks. Nevertheless, current evaluation benchmarks present two major shortcomings: a lack of annotations that justify moral classifications, which limits transparency and interpretability; and a predominant focus on English, which constrains the assessment of moral reasoning across diverse cultural settings. In this paper, we introduce MFTCXplain, a multilingual benchmark dataset for evaluating the moral reasoning of LLMs via hate speech multi-hop explanation using Moral Foundation Theory (MFT). The dataset comprises 3,000 tweets across Portuguese, Italian, Persian, and English, annotated with binary hate speech labels, moral categories, and text span-level rationales. Empirical results highlight a misalignment between LLM outputs and human annotations in moral reasoning tasks. While LLMs perform well in hate speech detection (F1 up to 0.836), their ability to predict moral sentiments is notably weak (F1 < 0.35). Furthermore, rationale alignment remains limited mainly in underrepresented languages. These findings show the limited capacity of current LLMs to internalize and reflect human moral reasoning.
Modern language models often have open weights but closed training data. We formalize the problem of data approximation from model weights and propose several baselines and metrics. We develop a gradient-based approach that selects the highest-matching data from a large public text corpus and show its effectiveness at recovering useful data given only weights of the original and finetuned models. Even when none of the true training data is known, our method is able to locate a small subset of public Web documents can be used to train a model to close to the original model performance given models trained for both classification and supervised-finetuning. On the AG News classification task, our method improves performance from 65% (using randomly selected data) to 80%, approaching the expert benchmark of 88%. When applied to a model trained with SFT on MSMARCO web documents, our method reduces perplexity from 3.3 to 2.3, compared to an expert LLAMA model's perplexity of 2.0.
Performance evaluation for Content-Based Image Retrieval (CBIR) remains a crucial but unsolved problem today especially in the medical domain. Various evaluation metrics have been discussed in the literature to solve this problem. Most of the existing metrics (e.g., precision, recall) are adapted from classification tasks which require manual labels as ground truth. However, such labels are often expensive and unavailable in specific thematic domains. Furthermore, medical images are usually associated with (radiological) case reports or annotated with descriptive captions in literature figures, such text contains information that can help to assess CBIR.Several researchers have argued that the medical concepts hidden in the text can serve as the basis for CBIR evaluation purpose. However, these works often consider these medical concepts as independent and isolated labels while in fact the subtle relationships between various concepts are neglected. In this work, we introduce the use of knowledge graphs to measure the distance between various medical concepts and propose a novel relevance measure for the evaluation of CBIR by defining an approximate matching-based relevance score between two sets of medical concepts which allows us to indirectly measure the similarity between medical images.We quantitatively demonstrate the effectiveness and feasibility of our relevance measure using a public dataset.
In the era of digitalization, as individuals increasingly rely on digital platforms for communication and news consumption, various actors employ linguistic strategies to influence public perception. While models have become proficient at detecting explicit patterns, which typically appear in texts as single remarks referred to as utterances, such as social media posts, malicious actors have shifted toward utilizing implicit influential verbal patterns embedded within conversations. These verbal patterns aim to mentally penetrate the victim's mind in order to influence them, enabling the actor to obtain the desired information through implicit means. This paper presents an improved approach for detecting such implicit influential patterns. Furthermore, the proposed model is capable of identifying the specific locations of these influential elements within a conversation. To achieve this, the existing dataset was augmented using the reasoning capabilities of state-of-the-art language models. Our designed framework resulted in a 6% improvement in the detection of implicit influential patterns in conversations. Moreover, this approach improved the multi-label classification tasks related to both the techniques used for influence and the vulnerability of victims by 33% and 43%, respectively.