Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Pneumonia is a leading cause of mortality in children under five, with over 700,000 deaths annually. Accurate diagnosis from chest X-rays is limited by radiologist availability and variability. Objective: This study compares custom CNNs trained from scratch with transfer learning (ResNet50, DenseNet121, EfficientNet-B0) for pediatric pneumonia detection, evaluating frozen-backbone and fine-tuning regimes. Methods: A dataset of 5,216 pediatric chest X-rays was split 80/10/10 for training, validation, and testing. Seven models were trained and assessed using accuracy, F1-score, and AUC. Grad-CAM visualizations provided explainability. Results: Fine-tuned ResNet50 achieved the best performance: 99.43\% accuracy, 99.61\% F1-score, and 99.93\% AUC, with only 3 misclassifications. Fine-tuning outperformed frozen-backbone models by 5.5 percentage points on average. Grad-CAM confirmed clinically relevant lung regions guided predictions. Conclusions: Transfer learning with fine-tuning substantially outperforms CNNs trained from scratch for pediatric pneumonia detection, showing near-perfect accuracy. This system has strong potential as a screening tool in resource-limited settings. Future work should validate these findings on multi-center and adult datasets. Keywords: Pneumonia detection, deep learning, transfer learning, CNN, chest X-ray, pediatric diagnosis, ResNet, DenseNet, EfficientNet, Grad-CAM.
Large language models(LLMs) excel at text generation and knowledge question-answering tasks, but they are prone to generating hallucinated content, severely limiting their application in high-risk domains. Current hallucination detection methods based on uncertainty estimation and external knowledge retrieval suffer from the limitation that they still produce erroneous content at high confidence levels and rely heavily on retrieval efficiency and knowledge coverage. In contrast, probe methods that leverage the model's hidden-layer states offer real-time and lightweight advantages. However, traditional linear probes struggle to capture nonlinear structures in deep semantic spaces.To overcome these limitations, we propose a neural network-based framework for token-level hallucination detection. By freezing language model parameters, we employ lightweight MLP probes to perform nonlinear modeling of high-level hidden states. A multi-objective joint loss function is designed to enhance detection stability and semantic disambiguity. Additionally, we establish a layer position-probe performance response model, using Bayesian optimization to automatically search for optimal probe insertion layers and achieve superior training results.Experimental results on LongFact, HealthBench, and TriviaQA demonstrate that MLP probes significantly outperform state-of-the-art methods in accuracy, recall, and detection capability under low false-positive conditions.
Unmanned Aerial Vehicles, commonly known as, drones pose increasing risks in civilian and defense settings, demanding accurate and real-time drone detection systems. However, detecting drones is challenging because of their small size, rapid movement, and low visual contrast. A modified architecture of YolovN called the YolovN-CBi is proposed that incorporates the Convolutional Block Attention Module (CBAM) and the Bidirectional Feature Pyramid Network (BiFPN) to improve sensitivity to small object detections. A curated training dataset consisting of 28K images is created with various flying objects and a local test dataset is collected with 2500 images consisting of very small drone objects. The proposed architecture is evaluated on four benchmark datasets, along with the local test dataset. The baseline Yolov5 and the proposed Yolov5-CBi architecture outperform newer Yolo versions, including Yolov8 and Yolov12, in the speed-accuracy trade-off for small object detection. Four other variants of the proposed CBi architecture are also proposed and evaluated, which vary in the placement and usage of CBAM and BiFPN. These variants are further distilled using knowledge distillation techniques for edge deployment, using a Yolov5m-CBi teacher and a Yolov5n-CBi student. The distilled model achieved a mA@P0.5:0.9 of 0.6573, representing a 6.51% improvement over the teacher's score of 0.6171, highlighting the effectiveness of the distillation process. The distilled model is 82.9% faster than the baseline model, making it more suitable for real-time drone detection. These findings highlight the effectiveness of the proposed CBi architecture, together with the distilled lightweight models in advancing efficient and accurate real-time detection of small UAVs.




Human-object interaction (HOI) detection aims to localize human-object pairs and the interactions between them. Existing methods operate under a closed-world assumption, treating the task as a classification problem over a small, predefined verb set, which struggles to generalize to the long-tail of unseen or ambiguous interactions in the wild. While recent multi-modal large language models (MLLMs) possess the rich world knowledge required for open-vocabulary understanding, they remain decoupled from existing HOI detectors since fine-tuning them is computationally prohibitive. To address these constraints, we propose \GRASP-HO}, a novel Generative Reasoning And Steerable Perception framework that reformulates HOI detection from the closed-set classification task to the open-vocabulary generation problem. To bridge the vision and cognitive, we first extract hybrid interaction representations, then design a lightweight learnable cognitive steering conduit (CSC) module to inject the fine-grained visual evidence into a frozen MLLM for effective reasoning. To address the supervision mismatch between classification-based HOI datasets and open-vocabulary generative models, we introduce a hybrid guidance strategy that coupling the language modeling loss and auxiliary classification loss, enabling discriminative grounding without sacrificing generative flexibility. Experiments demonstrate state-of-the-art closed-set performance and strong zero-shot generalization, achieving a unified paradigm that seamlessly bridges discriminative perception and generative reasoning for open-world HOI detection.
Intelligent image editing increasingly relies on advances in computer vision, multimodal reasoning, and generative modeling. While vision-language models (VLMs) and diffusion models enable guided visual manipulation, existing work rarely ensures that inserted objects are \emph{contextually appropriate}. We introduce two new tasks for advertising and digital media: (1) \emph{context-aware object insertion}, which requires predicting suitable object categories, generating them, and placing them plausibly within the scene; and (2) \emph{sponsor-product logo augmentation}, which involves detecting products and inserting correct brand logos, even when items are unbranded or incorrectly branded. To support these tasks, we build two new datasets with category annotations, placement regions, and sponsor-product labels.
While Vision-Language-Action (VLA) models generalize well to generic instructions, they struggle with personalized commands such as "bring my cup", where the robot must act on one specific instance among visually similar objects. We study this setting of manipulating personal objects, in which a VLA must identify and control a user-specific object unseen during training using only a few reference images. To address this challenge, we propose Visual Attentive Prompting (VAP), a simple-yet-effective training-free perceptual adapter that equips frozen VLAs with top-down selective attention. VAP treats the reference images as a non-parametric visual memory, grounds the personal object in the scene through open-vocabulary detection and embedding-based matching, and then injects this grounding as a visual prompt by highlighting the object and rewriting the instruction. We construct two simulation benchmarks, Personalized-SIMPLER and Personalized-VLABench, and a real-world tabletop benchmark to evaluate personalized manipulation across multiple robots and tasks. Experiments show that VAP consistently outperforms generic policies and token-learning baselines in both success rate and correct-object manipulation, helping to bridge the gap between semantic understanding and instance-level control.




Mycetoma is a neglected tropical disease caused by fungi or bacteria leading to severe tissue damage and disabilities. It affects poor and rural communities and presents medical challenges and socioeconomic burdens on patients and healthcare systems in endemic regions worldwide. Mycetoma diagnosis is a major challenge in mycetoma management, particularly in low-resource settings where expert pathologists are limited. To address this challenge, this paper presents an overview of the Mycetoma MicroImage: Detect and Classify Challenge (mAIcetoma) which was organized to advance mycetoma diagnosis through AI solutions. mAIcetoma focused on developing automated models for segmenting mycetoma grains and classifying mycetoma types from histopathological images. The challenge attracted the attention of several teams worldwide to participate and five finalist teams fulfilled the challenge objectives. The teams proposed various deep learning architectures for the ultimate goal of this challenge. Mycetoma database (MyData) was provided to participants as a standardized dataset to run the proposed models. Those models were evaluated using evaluation metrics. Results showed that all the models achieved high segmentation accuracy, emphasizing the necessitate of grain detection as a critical step in mycetoma diagnosis. In addition, the top-performing models show a significant performance in classifying mycetoma types.




A vision-based trajectory analysis solution is proposed to address the "zero-speed braking" issue caused by inaccurate Controller Area Network (CAN) signals in commercial vehicle Automatic Emergency Braking (AEB) systems during low-speed operation. The algorithm utilizes the NVIDIA Jetson AGX Xavier platform to process sequential video frames from a blind spot camera, employing self-adaptive Contrast Limited Adaptive Histogram Equalization (CLAHE)-enhanced Scale-Invariant Feature Transform (SIFT) feature extraction and K-Nearest Neighbors (KNN)-Random Sample Consensus (RANSAC) matching. This allows for precise classification of the vehicle's motion state (static, vibration, moving). Key innovations include 1) multiframe trajectory displacement statistics (5-frame sliding window), 2) a dual-threshold state decision matrix, and 3) OBD-II driven dynamic Region of Interest (ROI) configuration. The system effectively suppresses environmental interference and false detection of dynamic objects, directly addressing the challenge of low-speed false activation in commercial vehicle safety systems. Evaluation in a real-world dataset (32,454 video segments from 1,852 vehicles) demonstrates an F1-score of 99.96% for static detection, 97.78% for moving state recognition, and a processing delay of 14.2 milliseconds (resolution 704x576). The deployment on-site shows an 89% reduction in false braking events, a 100% success rate in emergency braking, and a fault rate below 5%.
Outlier detection is a critical task in data mining, aimed at identifying objects that significantly deviate from the norm. Semi-supervised methods improve detection performance by leveraging partially labeled data but typically overlook the uncertainty and heterogeneity of real-world mixed-attribute data. This paper introduces a semi-supervised outlier detection method, namely fuzzy rough sets-based outlier detection (FROD), to effectively handle these challenges. Specifically, we first utilize a small subset of labeled data to construct fuzzy decision systems, through which we introduce the attribute classification accuracy based on fuzzy approximations to evaluate the contribution of attribute sets in outlier detection. Unlabeled data is then used to compute fuzzy relative entropy, which provides a characterization of outliers from the perspective of uncertainty. Finally, we develop the detection algorithm by combining attribute classification accuracy with fuzzy relative entropy. Experimental results on 16 public datasets show that FROD is comparable with or better than leading detection algorithms. All datasets and source codes are accessible at https://github.com/ChenBaiyang/FROD. This manuscript is the accepted author version of a paper published by Elsevier. The final published version is available at https://doi.org/10.1016/j.ijar.2025.109373




Artificial intelligence (AI)-driven augmented reality (AR) systems are becoming increasingly integrated into daily life, and with this growth comes a greater need for explainability in real-time user interactions. Traditional explainable AI (XAI) methods, which often rely on feature-based or example-based explanations, struggle to deliver dynamic, context-specific, personalized, and human-centric insights for everyday AR users. These methods typically address separate explainability dimensions (e.g., when, what, how) with different explanation techniques, resulting in unrealistic and fragmented experiences for seamless AR interactions. To address this challenge, we propose PILAR, a novel framework that leverages a pre-trained large language model (LLM) to generate context-aware, personalized explanations, offering a more intuitive and trustworthy experience in real-time AI-powered AR systems. Unlike traditional methods, which rely on multiple techniques for different aspects of explanation, PILAR employs a unified LLM-based approach that dynamically adapts explanations to the user's needs, fostering greater trust and engagement. We implement the PILAR concept in a real-world AR application (e.g., personalized recipe recommendations), an open-source prototype that integrates real-time object detection, recipe recommendation, and LLM-based personalized explanations of the recommended recipes based on users' dietary preferences. We evaluate the effectiveness of PILAR through a user study with 16 participants performing AR-based recipe recommendation tasks, comparing an LLM-based explanation interface to a traditional template-based one. Results show that the LLM-based interface significantly enhances user performance and experience, with participants completing tasks 40% faster and reporting greater satisfaction, ease of use, and perceived transparency.